Elastic COBOL Language Reference Manual

COBOL-85 Standard ANSI X3.23B

REVISION: OCTOBER 2015

The contents of this manual may be revised without prior notice. No part of this
document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the expressed written permission
of Heirloom Computing Inc.

Heirloom Computing has made every effort to ensure that this manual is correct and
accurate, but reserves the right to make changes without notice at its sole discretion
at any time.

© 2012 Heirloom Computing Inc
All Rights Reserved



Preface

Trademarks

e IBMis aregistered trademark of International Business Machines Inc.

e Oracle and Java are registered trademarks of Oracle and/or its affiliates.

e UNIX s a registered trademark licensed exclusively to X/Open Company Limited.
e Linux is a registered trademark of Linus Torvalds.

e  Windows is a registered trademark of Microsoft Corporation.

e Eclipse is a trademark of the Eclipse Foundation Inc.

e Other names may be trademarks of their respective owners.

COBOL Language Reference

This describes the base COBOL language supported by this system: this COBOL language is
based on the ANSI COBOL standards X3.23-1985, X3.23a-1989 and X3.23b-1993, and is
supported by a number of COBOL systems. In addition, support has been added for some of
the features from ISO/IEC 1989:2002, Programming language COBOL.

COBOL is an industry language and is not the property of any company or group of companies,
or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any contributor, or by the
committee, in connection herewith.

The authors and copyright holders of the copyrighted material used herein:

FLOW-MATIC Programming for the Univac | and Il, Data Automation Systems
copyrighted 1958,1959, by Sperry Rand Corporation; IBM Commercial Translator Form
No. F28-8013, copyrighted 1959 by IBM; FACT, DSI27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in part, in the COBOL
specifications. Such authorization extends to the reproduction and use of COBOL specifications
in programming manuals or similar publications.

Elastic COBOL Language Reference Manual ii



Contents

2.

3.

4,

L5 0 ] = 1
NORMATIVE REFERENCES ..t uuuuuustsssusmusssssssssssssssssssssssssnssssssssssssssssssssssssnsnnnnsnnnnns 2
INTERNATIONAL STANDARD CONFORMANCE...:csucussassasssssssnsasssssssnssssnsnnssnsnnnnnnnnnnnn 3
DESCRIPTION TECHNIQUES. ... ucitssssssnssnsssnsssssssssssssssssssssanssnnnssssssssssssssssnnssnnnnnans 6
GENERAL FORMAT S, et tutttttttttaeneneataesesesesensneastetrsesesasaesesssreessastesssessentensnetesssessenrnenenenersenenes 6
G300 1T PRI 6
(@] a1 1Ta] g T T o o L P 7
OPEIANTS. ...ttt 7
[N =] I 010 0] 0 1= T S 7
(0] 011 £ 1T PSPPI 7

] 7= Lo (= 1T 7

> = o =SS 7

L 17 = 8
LU Lo (U 1 (o ) T 8
SPECIAI CRATACTELS. ... ettt e e et es 8
1YL= 2 = 2Vt 8
0= 8
SYNEAX FUIBS. .. ss ettt et ettt ettt ettt et e et et et et e e ittt et e st e e eaaeaes 8
LT =Tz L AV L= 9

Y o [0 1= o] T 9
RETUINEA VAIUEBS. ... .c.eisi ettt et ettt e ettt ettt ettt et et et aaesaaeaenaaneens 9
ARITHMETIC EXPRESSIONS. 11t ututututtesessseeneneasnesesesrereeenetesrsrerenrsenetesrememenrrenetrermemarneteerenens 9
DOUBIE SUBSCIIPES. ...ttt et ettt et e e e e e e e e e es 9
17 =2 9
LT =] 11 TS = 9
NATURAL LANGUAGE TEXT e ututueuttetaenentnsnenssssreneensnstesesesrensssnstssmemeearnenenmtrmememsrenemetemerenennns 10
[ 2= = N E TN =5 I 10
REFERENCE FORM AT 1t et s s ssssssmsssssssmsssssssssssssssssssssssssssssssssssssssssnsssnnnnns 10
FIXED-FORM REFERENCE FORMAT ..t 1 ttutututstsesstseneneassesssesssesnenssesesesmetssnenetesrememearneeesrsimnenrnes 11
SEQUENCE NUIMBEIS. ... sttt ettt ettt ettt et e et e e e et e a e aaees 12
(@00 11 V=1 o) g oL A = 12
2] = T 1 [ 1=X 13
(@00 1.2 2 1= 1 % 13
D)1=l o]0 o o g o I |4 1= TS 14
FREE-FORM REFERENCE FORMAT . .11ttt tttuttattenttseseneraeraserasessassnemtensrernemernernrmssnemermermermernemnnens 14
(@00 117 U= 1 To ) g o A = 14
BIANK lINES.. .. sttt ettt e et 14
(000 111 = 1 %S 15
DEDUGQING lINES......c.eee ettt ettt e e 15
LOGICAL CONVERSION. .1ttt tttutututsesesesenenensssseses s e taeassetsstssenssssesstsesenetnssetesesenseseseasereneinsenens 16
COMPILER DIRECTING FACILITY ttuuuuuuussssasssssssssssssssssssssssssssssssssssssssssssssssnsssnsnnnnns 18
(L@ ] S 1/ = Y11=V 19
[ o I AN O S 1 1 = Y] =1 23
COMPILER DIRECTIVE S . 11t ttututututseststesenensnssesesstetasnenesetsststetaesesetettensnetsesesstesienenenteteseseteasssens 25
LTI L=T = I 0 =S 26

Elastic COBOL Language Reference Manual iii



Conditional COMPIIALION. ............. e ee e 26

Constant conditional @XPIeSSION. .........u.uu ittt 26
DEFINED CONDITION . 11 tututtttsenensussensssssenensnsnssesssessenenensnssesssmsnernenesstremenenrnrnesrsrsrerartetenemerienens 27
L Y= =T 1= 27
T =ESTSY T = I 1= =T 1Y/ = 28
L] D112 =T AV =5 28

7. LANGUAGE FUNDAMENTALS . uuuutsscaussnsssssssnssssssssssssssssssssssssnssssssssnsnssssssnnnnnnnnnns 34
L EXICAL ELEMENT S, ttututtttsesentneesssnensnsesssssseneassssssnsnsstsssenssensssssessseseesssssensnesessestessessessessenesnes 36

(O 0= = Lo (=) 0y 1 Lo K 36

PUNCHUALION CRAIACTEIS. ... .. ettt ettt ettt e ettt et ettt e e ettt et et entesanaenens 51

RY=] o= T 100 ) T PP 52
REFERENCE S, .ttt tttttututttetsentaee et sseseneeessassentstsssssessastesseassensasssssenensnsrestessnenesssteneneseesrsssenensenes 53

0 (=] 011 = T 54

L= 1T VIS 1 (o 2 61

UNIQUENESS OF FEFQIEINCE. ... ittt ettt ettt e e araraas 61

EXplicit and imPIICIt FEFEIENCES. ... ...t e e 63

SCOPE OF NAIMIES. ...ttt ettt e e e e e e e e et e aneens 63
CLASS AND CATEGORY OF DATA. .1 tutttttaueneneteetentaeeetratneeeetrseneraererteetnerartenraeieremtererneeremnerrernes 66
OPERATORS . .11 st ettt ttteneneataetetes e e eaeasaetrareeesensaeaeastrsse e sasaenenstresenenrasnesesesrenenensssenensenenersenennres 67

YY1 gL (ol 0] o =T = 1 (o) S 67

REIAtIONAI OPEIAIOIS. ... .ottt et et e e e e 68
T ] =TS [0 68

ALTTRMETIC @XPIESSIONS. .. v sttt ettt et et e et ettt et ettt et e e e et a e e st e e e e s e enenenenes 68

CONCALENALION EXPIESSIONS. ... ettt e et e e e e et et e e e et e e e s ee e 70

CONAItIONAI EXPIESSIONS. ... ettt 71

Order of evaluation Of CONAITIONS. ...........es ittt et ettt e ea s e s e ataaeaaeanenns 79

8. INPUT/OUTPUT FILES . utttsuuuuussssnusmmnsssasssmnssssssssssssssssssssssssssssssssssssssssnsnssssnssnsnnnnns 81
(0 ] 27X ] 72 11 S 81
o0 =1 TSR [0 ] =5 82

J =] A= 1[0 V[ 83

CUITENT VOIUIME POINTE ... sttt ettt ettt ettt e et a et et et e e e e e e tn e s e enenes 83

File POSItION INQUCALOL ... .. e et e et et et et e e e e e eneas 84
@ S Y 0 84

INVAIIA K€Y CONTITION. ......vviieeeee e e s 89

J A =1 Lo [0 o o/ 11 o o S 90

RETRY PRIGSE. ... ettt e et et et ettt e e ans 90
ST N 1 = 91
0] 2 1AY=L = I =5 92

R £ L= 92

1Y = o = 1= S P 93
S CREEN S . ¢ttt tttutut ettt eaeneeetrasaeaterssaeaeaseresteasaenessrasneasneasrassensnsersstensnetestenenenesentrnsnenennrersersens 93

FLET A= e (== o TS 93

L0 IS = T 1 S 94

LT £ S 95

LT 1Yo g [0 07 (o] 95

(@0 1 (=] a1 BE=Yol (=1=] 11N 1 (= 1. 96

(000 (o] 1011 o= S 96

SCIrEENCOION INUMBEIS. ...ttt ettt ettt ettt ettt et et ta e s e e aaa s e e eaanaanens 96
KEY STROKE VAR ABLE . ...t tuttutttt ettt eteeeteaa e e tae e ettt aa e e eaeteaeeaetaeaeaaeaaeneeaeaseneaneraeaereerneenneenneens 97

KEYSHOKE VAlIADIES. ........ieiiiiii e e 97

A 1 S 99

D 1 99

L S 99

Elastic COBOL Language Reference Manual iv



L O T I [ 100

L (O = S 100
AT AT/ Y I 1 S 100
TERMINATE. ...ttt ittt ettt st ettt s et e et a s et s e ea s s st s e et s e et s e sa s e ssasssanaessnsneens 100
SCREEN CONT RO utitititiiiiiiiit ettt ettt et e et et e e et e e e et e e s e et et e ae it ereaeraenenes 100
EVENT STATUS. ...ttt ettt e et ettt e e ettt st e e st et eaeesasenes 101
(O 1@ = S 102
(00 SN 7Y LS S TS 102
FILE ASSIGNMENT AND PROTOCOLS. .1t ttititttettsttettrersstetaeieetrarneaereetraeearasrertetaenererrnrreereeneens 102
9. COMPILATION GROUP STRUCTURE uuttsssusssssssassssssssssssssssssssssssssssssssssssnssssnnnnnnnns 107
COBOL COMPILATION GROUP. ..\t tutueutustesesessensnsnenstesreneentassesrsrsientesnetrsrssensesenemerererrrenernnns 108
END MARKE R S . 1ttt tttttttntttaetentaee s ssentas e etsassenssstessaesstsssensnesrassensnsisssssensnssnssnssnernernesseenses 110
e =1 NI = = =0 = I ] 32 110
PROGRAM ORGANIZATION AND COMMUNICATION .. eututuisesesesenenenenesesesessensnensnesesrsessenrnsnensresrenemenees 111
(0] o) (1o S Vg Lo [ L= KoY = T P 111
(@) o] =0 1 =) =T =Yg o= PP 111
LY/ 1 o o K 112
L1 ole T 1=Tex (o CAr S 112
Global NamMES aNd 10CAI NAMES...........iuieie ettt ettt ettt ettt e e et eaeneenes 112
EXternal @nd iNtEINal [lEIMIS. ........ue ittt ettt ettt et et e e e e e s easensenes 113
Automatic, initial, @Nd SEALIC ITOIMIS. ........ sttt ettt te ettt e e easeareasenes 114
Common, initial, and reSident PrOGraMS. ..........uuiiuiisae ettt a e e eaa e 114

R = a0 I L - VPP 115
Sharing file CONNECIOIS. .. .. ettt e e 115

LAY/ L= 1 oo I 1Yo Loz 11 (o) TS 115
PrOGIAM FESUILS. ....ivieeeee ettt et e et a et 116
(00T XX 0] 1= 41 =1 o= 116

[ =8 =T I [ = ' X = 116
] (=X 0y Yo (= (o) o] o] [=Tox £ 116
10. IDENTIFICATION DIVISION. . uuuuussssusssssssssssssssssssssssssssssssssssssssssssssssssssssnsssssnnsnnnns 118
PROGRAM-ID PARAGRAPH. ...ttt ttutttttttt ettt tasteaetett et tastaatata e eetetetrarerenrrsnetrarererserenerrenes 118
CLASS D P ARAGRAPH. 111ttt sttt teeteassee e estasaesstasteaeestastentaeeetsssnensteetrasnensastsraenensensennnn 120
METHOD-ID P ARAGRAPH. ...ttt ittt ettt ettt tteae et ra sttt ettt tataeaertrartenraerertrnenraereetrnsnenenenes 121
11. ENVIRONMENT DIVISION .. uuutesuuussssssnssssssssssssssssssssssssssssssssssssssssssssnssssnsnsnnsnnnns 124
CONFIGURATION SECTION . 111 tutttttnsneneusnesssessenenensasssseseesetnensnetrememeneatenesrsreraearteesrrsrararenenns 124
SOURCE-COMPUTER Paragraph........coue et e e 125
OBJECT-COMPUTER Paragraph. ..........coee e eene e 125
SPECIAL-NAMES PARAGRAPH. .11t tutttttttttttettsetettatsteteaetetetteataeteteaettsiataestetrarerersereaersens 127
YL/ O 1 = 10 £ =S 130
IMPLEMENTOR ClAUSE......cueueiiisiiiitt ettt et e e e ettt e e et s et et ta s s s easeaeeeanes 132
QY Y 1 I O 1= T Y = 134
SYMBOLIC ClAUSE.....e ettt ettt et e ettt e e e ettt e aer e eaeaasesenen 135
CLASS ClAUSE. ...eueuieis sttt ettt ettt ettt e ettt e et ettt e e et et e an e ee e eneseaes 136
CURRENCY ClAUSE. ... vttt ettt ts st e st s et e s et s e st s e s et e tateteeeanennen 137
DECIMAL-POINT ClAUSE......iutniiii ettt ettt e ettt e et e ettt et e e teaseaaenss 137
CURSOR ClAUSE. ...ttt ettt ettt ettt ettt e e e ettt e e e ettt et e e e eaneeneasenen 138
CRT-STATUS ClAUSE.......eeieseteset ettt et ettt e e e ettt e et ettt e et ettt naaeaeenseranensns 138
SCREEN CONTROL ClAUSE. .....cueuiiieisieit ettt e et ettt e et asaats e te et ts e siesetaaresasensens 138
EVENT STATUS ClAUSE......cuiniieiiiiieietei ettt ettt e ettt et et ettt et a e aaeaes 139
CALL-CONVENTION ClAUSE. ... cuiuirieietieeiate ettt ettt e e e ettt e e et ae s eesensens 139
RETURN-CODE ClAUSE. ... .ueuiuiuistiteette ettt e ettt eta e ettt e e et eaea st eee e eseeseess 140
DYNAMIC CONFIGURATION ClAUSE.......cueueeisiiietiiisaetetttsetsiatetaesaseteaaeatnsieisssinerensnns 140

Elastic COBOL Language Reference Manual %



12.

DYNAMIC ENVIRONMENT CIAUSE. ...t eas 141

LINKAGE ClAUSE.... ettt sttt ettt e e e ettt e e e ettt e e et st st s e e ea e e e eaeeneesenen 141
REPOSITORY PARAGRAPH. .1 1t ttttttttettttt e tttetete et tastaarara e eaeraetetrarsrenrrenetrarerertenenernenes 141
FIGURATIVE-CONSTANTS PARAGRAPH. ...ttt ittt tttattatetentrneraetsrasessaseeetentrereasrnretaseteeiennenns 143
INPUT-OUTPUT SECTION. .ttt tttutttttttteneuetetrasseneersrsstenteieetraeneaereetraeenraersrtrrtaerrrnrrerenenes 143
FILE-CONTROL PARAGRAPH. ...ttt ettt ettt e ettt et e et ettt tae it e et et et e raeeneaneiaenteneenes 143

Y I O O - T Y = 147

ASSIGN ClAUSE. ...v vttt ettt ettt ettt ettt st et a e a e e et a e tae e eanaanaaees 148

ACCESS MODE ClAUSE.....eeiiiiiite ettt ettt ettt ettt et ettt ae e taeereenes 149

ALTERNATE RECORD KEY ClAUSE.......iuiuitiiiieteiai et tetetatateeeat et eateeaeaaaaaaeaseneneanens 150

COMPRESSION ClAUSE....ueeeieae ettt ettt ettt e et et ettt et e eeseasaeneenas 151

ENCRYPTION ClAUSE. .....uiueei ittt ettt ea ettt e ettt sttt s ettt s e s s eaeas et tastieeenns 151

COMPRESSION ClAUSE......ieeiiii ittt ettt ettt ettt ettt e e et ieaeenas 152

CONTROL AREA ClAUSE......cueuiiiieeeeetetet sttt ettt e ettt e e ettt e e e aeeeeenes 152

CURSOR COLUMN ClAUSE. ... euiuseie ittt ee sttt et e sttt et e ettt e e et e tn et eaeaseranensens 152

[y Y Vg O - 10 1= J 152

ENCRYPTION ClAUSE.....cuiuieieiiiiii ittt ettt ettt ettt e et e e et et et e eraenes 152

INDEX SIZE ClAUSE.....eeiiieis ettt ettt e ettt e e e ettt e e e st ettt e s e e s ebasneneens 153

YL@ ST o N 1 - 10 £ = S 153

L R I O L= T K = 153

FILE LOCKING ClAUSE. . ..cuiuitiiieeeiiti ettt ettt e ettt ettt e et et e et e et e e et eraenes 153

FILE STATUS ClAUSE. ... cuiviiieiti ettt ettt e e ettt e et ettt e e e e bt ae et eaeneneses 155

ORGANIZATION ClAUSE.. .....eeeiei sttt ettt et ettt ete e e ettt e et et eeseasaeseesns 155

PADDING CHARACTER ClAUSE........iuiiieiiietei ettt ete ettt et tea e et eeaaaa i esaeasaaanens 156

PASSWORD ClAUSE. ... . iuiuiit ittt ettt ettt ettt e ettt ettt ettt et et e teseataneaneanenns 157

RECORD DELIMITER ClAUSE.......uuiuiiiittttsate ettt e e aeae et e e ettt s e e eaeaeeaeess 157

RECORDING MODE ClAUSE.......cueeeisi ettt eta e ettt aaa e te et etea et eseaneneenes 158

RECORD KEY ClAUSE......uiuiiiei ittt ettt e ee et tata e et ata ettt et sea s esa et eastastieeenns 158

RELATIVE KEY ClAUSE......iuieiiiiieiiie ettt ettt ettt e ettt et e e ettt e e e e et et et eraenes 159

RESERVE ClAUSE.......eiieiis ettt ettt ettt et e e ettt e et et ettt e e e e e e s ensesenen 160

SHARING ClAUSE.. ... ..eueiisi ettt ettt ettt e ettt e ettt e e st e e e s eseenenesenes 160
[-O-CONTROL PARAGRAPH. ...ttt ittt ettt ittt attete et ttata et tattetastartenentaeiaetraeentasrarteensenes 161

YA @ = T = 161

RERUN ClAUSE. .....eeiiie ittt ettt ettt e e ettt e ettt e sttt e e e et e bt e s eaeanenes 163

MULTIPLE FILE TAPE ClAUSE........cueiuitiee ittt eta e ettt te et ae ettt e aa et e aneneneanes 165

COMMITMENT ClAUSE....cueeisiiita sttt ettt ettt et e e et a e e e et et et s e e s eaaeseeaeeeanes 165

J A I 1 - 10 £ = J 165

DATA DIVISION .« u s uunsssasssssssssmnsssssssmsssssssmsssssssssssssssssssssssssssssssssssssssssssssnsnnns 166
COMPUTER-INDEPENDENT DATA DESCRIPTION .. tututttttssasenenensnetesesessensnensnesrerensrsenerssnensrsenrnerenens 168

Physical @SPECES Of @ filE........ et 168

CRharacteriStiCS OF @ filE. ...ttt ettt ettt et e e ettt e e ettt teatee e e neenen 168

Jatzlole] (o [ole] g [o=] o] K J 169

=2 KT S 169

Selection of character representation and radiX.............c.eeeeeeiieiiiiiie e 170

Limitations of character RANAING............... o 171

AIGEDIAIC SIGNS. ... ettt aes 171

Standard aligNMENT TUIES. ...........iu ettt et e a s r e e aeaanans 171

Item alignment for increased object-code effiCIONCY ..........c.couuiiiiiiiriiiiie e 172
EXPLICIT AND IMPLICIT AT TRIBUTE S, 11t ttututututstsetteenentnssesesssteeensnstesesestentatssetesteeeienrereeneisereons 172
L I =S (o 1 T N T 173

L1l X o (ol o] 1[0 g =11 11 PP 173

Sort-merge file deSCIPLON ENIIY...........eu e ee e 176
WORKING-STORAGE SECTION . ...t uutttuttuttaeaeaeenttaaeeneeeeeaeasaeaataeeaeeaeeeaeraeaasaeeneaneeaseraseraeerneennes 177
LOCAL-STORAGE SECTION. ..ttt ttututntutsesesestenenensnesesessssenensnsnstesesesmenrnenssetrsreesetemsenemeeseremerereanrses 177

Elastic COBOL Language Reference Manual Vi



1IN X =T =T 1T S 178

SHARED-STORAGE SECTION . 11t tutututtttteutueetensneneeetearaeeaerssseneenerastenraeieetrenraereerrseisemenseneenens 179
SCREEN SECTION. 11t ttutttutueueueteseresenrasnesesesreneensaesensssereneentaesesrsremeaenesnetreneesrenerserensrtenernnns 180
T8-LEVEL DESCRIPTION ENTRY 1t uttutututstsentnestsssentnsierssseneemeesessnemmasmsmsesmemsisstettneiemsrenemrein 180
RECORD DESCRIPTION ENTRY .ttt ttutututttssatneeetrssneneersrsenetaeiertrnmemememsmnmemmeremetmmmerrmneann: 180
T7-LEVEL DATA DESCRIPTION ENTRY ..tuututututteueueetrsrneneenersstenreieetensnensmemsenseneenemnerneriemiemtrmemnes 181
DATA DESCRIPTION ENTRY 11 utututututtetesssesenenensnesesssseenenensnssreesmenrrnenstrsremememrermemersetemerermre 181
SCREEN DESCRIPTION ENTRY 1 tututtttutututstsesentstsssenentasiestentseiemsmssnmeimsrsmemmeisrmereeem. 183
DATA DIVISION CLAUSES. 1. tuttttttututnttratteneneastsesenteiertraentaereetratearaererteeraereetrtneremtensereeneeneres 189
A 1 = T3 £ = J 189
F O O 1 - T £ = 189
BACKGROUND-COLOR ClAUSE......iviuiiiiisiieetiistatesatseetssetsettsets ettt esarsasessensens 190
BACKGROUND-SEYIE CIAUSE...... e e 191
L IR - T X = 191
LY AN QO - T Y =S 191
BLANK WHEN ZERO ClAUSE.....ueuiiiia ettt ettt aaa sttt tseaa st tatat s tas e ssesnennsesnnes 192
L] A O = T3 £ = 192
BLOCK CONTAINS ClAUSE.....ueeieieittt ettt e ettt e ettt et e e et eeaseaenss 193
CHARACTER ClAUSE.....cueuisiiieie sttt ettt et et e ettt et et et et s e e st e e r e erenerenens 193
CLINES ClAUSE.....eeitiii ittt ettt et ettt et ettt s et et a e s et e et taa e a e e e ataereaenns 194
CODE-SET ClAUSE......cueieis ittt e ettt ettt et ettt et e et a et et e et tas e aenennennen 194
COLOR ClAUSE. ...ttt ettt ettt ettt et e e ettt s e et et et eaeneasenes 195
(OO T U VI O - T £ = 196
CONTROL ClAUSE.....euisiiii ittt ettt ettt e et s e st e et st s e e ata et aeessasanesen 197
CONTROL FONT ClAUSE.....cuiuiiieii ittt ettt ettt e ettt ettt e ettt et areieaeanas 197
CONTROL VALUE ClAUSE......c.eiiiiiiiieteteta ettt ettt e e ettt e e et e be s eaeaaensenas 197
(0001 A7 o = 01 101 = 197
(@RS Vg O = 10 1= 198
Data-name, screen-name, OF FILLER CIlAUSE.............uueuiiiieseaiiaiett sttt aeaessessassenssnnnens 198
[ A O I O = 10 £ = S 198
L0y [ 2 O - T Y =TS 199
LAY ]I B I = T X = 199
L Y O = 11 Y =S 199
EVENT ClAUSE. ... uiuieiieei ettt ettt e e ettt e ettt e e ettt e e et st e eaeaearenes 200
EXTERNAL ClAUSE......iuieiiiiiiie ittt ettt ettt et ettt e et et ettt e e st et st aeanseansaanen 200
L1 A 1 = 10 £ =T 201
FOREGROUND-COLOR ClAUSE.......cuieiiiiiiiiiteeeiete ettt ettt ettt et ettt et ieeans 201
FFORMAT ClAUSE. ... ettt ettt e e e e e e e ettt e e ettt ettt e e e e e e e e eaeeneeseaes 202
L @ 1 - 10 £ = S 202
FROM Clause GraphiCal...........c.ueeu et 203
L1 IR O - T X = 203
GET-PROPERTY ClAUSE.... ettt eetttttetae ettt e e e ettt e e e e st e et e s e enesaeenas 204
LTI =7 I O - T 1= J S 206
GRAPHICAL ClAUSE. ....eueii ittt ettt e ettt et et s et e et ta st s e e e aaateeennenen 206
GRIDLINE ClAUSE. ...ttt et et e sttt ettt e e ettt et et et e sttt s et et aaeereaneanennen 207
L LTI T 1D I O = 10 L= S 207
HIGHLIGHT ClAUSE. ...ttt ettt et ettt e et et e et et et a e s eanaaanen 207
IDENTIFICATION = ClAUSE.....uesiaeiiia sttt a e ettt et ettt sttt et ettt a s tts it s s easenssesnsneens 208
IDENTIFIED ClAUSE. ... cuiiei ittt ettt e e ettt e e e ettt et e e et et e s e et e bt eaeeaas 208
IDENTIFIED BY ClAUSE......cuiuiuiiieeiei ettt ettt e e ettt e e e ettt e e e et eaeeenas 208
INDICATOR ClAUSE....euisieieee it ettt ettt et ettt et e ettt et et et e e e e ttaeanseansasnen 209
JUSTIFIED ClAUSE. .. ..uiueeii ittt e te et e ettt e et ettt a et et a e s et e et ae st e et eeennaaseasans 209
LR O 2 0 25 = 210
L O = 10 £ = 210
LEVEI-NUMBET ClAUSE. ......eeieei ettt ettt e ettt e e et ettt e e easeanenses 210

Elastic COBOL Language Reference Manual vii



13.

J O 0 £ = 211

LINAGE ClAUSE.....cuiniiiiii ettt ettt ettt ettt et e et e ettt e e et e ettt e et e e e e aeas 211
LA O = 10 £ = S 214
LINES Clause GraphiCal............ouuuuieeeeee et 215
[ @ T O =11 Y = 215
LOWLIGHT ClAUSE......eeiieei sttt e ettt e ettt e e ettt e e et e et sttt e e et e s e e eaenenen 215
INUMERIC-FILL ClAUSE.......ieuiuieis ittt ettt ettt ettt et et et e et et et e e erenereaens 216
OCCURS ClAUSE.....uisiei ittt ettt ettt s et e ettt e ettt s e e e et ettt teareeseanansen 216
OUTPUT JUSTIFIED ClAUSE......cuiuisiiiieieiit ettt ettt ettt ettt e s aaieasenas 219
OVERLINE ClAUSE.......cuieiieei ettt ettt e ettt e et ettt et et e e e e e eneesaaen 220
PICTURE ClAUSE. ...cveuiiiieee ittt ettt et ettt ettt et et e et e ettt et ae e snanensnen 220
PROCEDURE ClAUSE. ... uiiiieisiisite ettt ettt et ettt et e et ta st e et ea et teas s teaenns 229
L@ 1Y | IO = T Y= 229
Property NAME CIAUSE. .............ouuieii ittt e st es 229
RECORD ClAUSE. ... ettt ettt ettt ettt e e e ettt e e et ettt e e et s ee e anaeneasenen 230
REDEFINES ClAUSE.....cuiiieiieitt sttt e ettt e ettt st e et sttt et st e e et eaeaaeareerenes 234
RENAMES ClAUSE.....uiuset ittt te ettt et ettt ettt ettt et e et taa et et s aa st e taaane et aneaneanenns 235
REQUIRED CIAUSE. ... .c.ceesiie et ettt ettt ettt ettt et e et e et et et ettt e et es e ea e enenenens 236
REVERSE-VIDEQ ClAUSE.......cuitiuieitiiteteteese ettt te ettt et ettt et a et e et e e ereaens 237
N L O = 11 Y= S 237
R O @ ] 1 - 10 £ = J 237
SECURE ClAUSE. .....iveiiiiti ettt ettt ettt e ettt e et ettt e e a e eneesenen 237
SET-PROPERTY ClAUSE. .. cueuiiiuitie ittt ete ettt et et e et e et ettt et st ae et aaananensnens 238
R AN I O = 10 £ = P 240
R I o O 1= 11 Y = 241
SIZE Clause GraphiCal.............uuiuuiiuiisiie ettt 241
SPACE -FILL ClAUSE........cuieisiei ittt ettt et et et e et e ettt taeeaeaenens 242
SPECIAL-NAMES ClAUSE......cueueieitiiis ittt ettt e e sttt ettt te st e e e saa e easasraanans 242
RN YN/ Y g B I 1 - 10 £ = 2t 243
RN A O T Y T S 243
SYNCHRONIZED ClAUSE.......ceuiuieiisiiieiti ettt tet et e ettt et et et et e e e e ttaesaenseensnans 243
SYSTEM MENU ClAUSE.......cueneieiiiii ittt ettt ettt ettt s et sta et e st taeeastastieenenns 244
A = 2 O = T 2 = Pt 244
F R L= 10 2 =T 244
O N O - T = 245
TO ClaUSE GraPRiCal. ..........ooueeeiee ettt eees 245
TRAILING-=SIGN ClAUSE......ceuiuiiiiiieieiati ettt ettt et ettt e ettt e e s aeasinans 245
UNDERLINE ClAUSE......cuiuieiiieite ettt ettt ettt e e e ettt e e e e e aas e nenss 246
L o O - 11 1= 246
L0 YA€ R @1 = 10 1= 246
USING ClAUSE . ....eneeiaiteee sttt e e ettt ettt e ettt et e ettt et e e et e ta e e e easeasaasannanens 253
USING Clause GraphiCal..............ouuiuieiiiiiii i eens 253
10 I O - T Y 254
VALUE ClaUSeE GIaphiCal..........euneeeeeeee e et 257
LSy O = 0 £ = 2 257
L O R | R O - 10 L= TP 258
PROCEDURE DIVISION .11ttt sssssssssssssssnssssssssssssmssssssssssssssssssssssssssssssssssssnssnnnns 259
T I = 1177 = 261
10 T = 10 = =5 261
B Y= o1 1 0 X 261
PaAragrapiIS. .. . ov e e, 261
STATEMENTS AND SENTENCE S, 11 utututtttteutneertensneneasessnsseneestsstensaemstsstetasieetreieietreieierensenn 262
Conditional StatemMENtS ANG SENIEINCES. .......uie ettt ettt ittt eataatsteat st enetieeenns 262
Declarative statements and declarative SENIENCES. ..........uuuuieie sttt et teietaereieieaenaana, 263

Elastic COBOL Language Reference Manual viii



Imperative statements and iIMpPerative SENEINCES. ..........uee e 263

Delimited SCOPE SLAEIMEINTS. ... ... ettt e 264

Explicit and impliCit SCOPE tEIMINALOIS. .........ireis sttt st ea e eneseneaeens 265
ST 1 1T 265

State of a function, method, OBJecCt, OF PrOGIamM............c.uuiuiei e 265

Explicit and implicit transfers Of CONTIOL................coii i 267

=TI (o (=] 0] 11 [ 11 (o) S 268

Sending and RECEIVING OPEIANTS. ..........eeeeee et et ee e e 268

RUN UNIE EEIMUNGALION. ... ettt ettt e e ettt e et a et ettt et e e eatnaas e senanaanens 269

OVErIAPPING OPEIANGS. ... cvieiiiiie ettt ettt e e s e e e 269

Multiple results in arithmetiC StAEMENTS. .........cuieiiei ettt et e a e e eneaenens 269

CoNAitioN RANAIING..........ee ettt et et 269
COMMON PHRASES AND FEATURES FOR STATEMENT S, .1t tttntntutnittsesteieineneseresieaenenrnesenesrsiearnenennns 270

ROUNDED PRAFASE.........euiiiiiiiiiii et s ettt e e e e 270

ON SIZE ERROR phrase and Size €rror CONAILION. ............uuuiuiiusisisiisieesieisasesaseesaasasasasanns 271

CORRESPONDING PRIASE. ...ttt eeaenes 272

WA 11 gL L= Toq T r= L] £ =] ] K 273
CONFORMANCE FOR PARAMETERS . ...t uttttttttutntttteneneetraetenterersetentaetertentneaeaertenrtemeaersrenemsensenes 273

L 1= T 1= (= TS 273
F O O S 1 1 =11V 1=V P 274
AC QUIRE STATEMEN T .ttt ttt et ettt et ettt e et et et s e e e e e e et e et e e et e e e e et et s e e e en e e s ea e e en e e e eaeeenens 282
I 1 - = Y] =1 283
e I I T O Ay I S 1 = 1= 285
A LT E R ST ATEMEN Tttt tuttttttttetetetsenentstestentaeeesssessneeesrsssensastsrsssentasiestesenensenssrsrssreeteeroneines 286
Y] o IS 2 11 =1V 1= Vi 287
0D IS 12 1 =11 1=V 288
L A I I .Y 11 =11V =1 P 289
(O N[O o IS 1Y = Y11 1S 293
(O I 2T R - =11 =1 295
(L@ 111 I - 1 = V] =11 298
(L@ 1Y/ 1 S 1/ 1= 1=V 298
CONTINUE STATEMEN T .t tttututettttenentieestssnetastsssenseasrsstenteieesraestteieetreenasiareetaeiertenensenns 299
[ I g 7 = 1= 299
(]S I O 2 1/ 1 =1 =1 1 302
]IS I N S 1/ 1= 1=V e 303
LTI g N = 1= N 310
] S o 1= V1= N 311
o VI 0 - = 1= 312
R VIS 72 1= 1= P 312
YN I I R 7 1= Y] =1 314
e (O I ST Y4 R 1 1 = Y] =1 317
o L O 7 = =1 318
I S 1 17 1= 1=V 318
L ] S 1 1 =11 1= S 320
LT T IO TS - 11 =111 = 321
(1@ = 7 AN O G - 1 = Y1 N 321
L LS 7 1= 1= N S 322
L I =Y 1= N 322
LN T I I S o o = 1= N 324
INQUIRE STATEMENT ...t ttttt ettt eet et et eae et et e e e e e e et e e ea e e et s e e e s e e et ea e e enee s ea e e enanenenenenanenanannn 326
1IN IS O IS 1 1= 1=V P 328
LN A @ ] S S N 1 = Y 1= N 334
I 1@ S 7N =11 =1 1 339
L T S 12 11 =1 1= VI 340
YL@ T S 2 I = Y= N S 344

Elastic COBOL Language Reference Manual ix



YL@ Y4 Sy N =] =V 347

L0 1 I B2 1 1= 1 =1 351
N[ I I Sy 2 1 =1 Y] =N P 352
(@ ] I IS 1N =1 N 352
PERFORM STATEMEN Tttt tututtttttentaeertrasneterararneteertrareerertratnearasrartetarnererenraeieesrrtenenenes 357
L A D IS o 11 =1 N 362
RE CEIVE STATEMEN T .. et tutttttttteentueueneteseneenraeaeastreeeneataetrarsreteensnsnetrsrneneesenenernenererenersenen 369
L I NSy S 7N =1 1= P 371
L I 1 I A 7 =Y =1 372
YT 7N = 1 =1 373
O I I X O S 1/ 1= 1= N e 379
SE AR CH ST ATEMEN Tttt ttttttttutattetsenentneesteatseeasrssseseeastastensaesrsstenseieesrsssereaeesesssnesnerserernens 379
] ot S N = 1= 383
SEN D ST ATEMEN T ..ttt tttutttt et etetee et eaeae et e ta e ettt a et eataee e rarasaeeaerasnenseraerteeteaseassnseneeneeneenenn 384
SE S SION STATEMEN T .1t utututtetetetanenenenraesrsesreenensaetesrarereraenenetetrererenrrnenetrerersenemsrerersererernens 384
RS IS 1 =Y 1= 385
L] [0 AT A N = 1= 394
S0 T IS 7N 1 = 1= N e 395
RS A IS 117X 1 = V1= VI 400
ST LS R 7 1 =1V =1 403
ST RING STATEMEN Tt ttttttuttttsenenterarteneaeererteataeeesraraeeersrartenrasiersrnenraersensensenesnernernerrerens 405
S 2 I A O I - = =1 e 407
LI R A R N 11 =1 =1 409
UN-E X CLUSIVE STATEMEN T ..ttt ttttittttttsttenteetsssesteeesrssnesasesrsesetastestestneaeieetreteeteetrineierens 410
L8 LI I 1O (3 1/ 1 =11V =1\ 1 410
UN ST RING STATEMEN T .t ttttttntntntustesesesienenentaetesesrsteenensaetesrstsrentestetrsremeiateenetrerreaerereinnes 411
L0 ST S 7N =1 =1V 415
R AT IS N == I e 417
MV R I T E ST ATEMEN Tt tututttttttnentt et eaeaeeerasteaeaeerastearaeeetrasneneeetrasnetasrarsenensnsrartensenssneenesnernes 418
14. SPECIAL REGISTERS. .uuuuuuttsssuissssssssmmssssssssmssssssssssssssssssssssssssssssssnsssssssnsnnnsnnns 428
LT 1 N 0 A [ =P 428
(@00 1= = N I, 428
L T 429
N1 I PP 429
[N 7 7 T O @ 10\ I e 430
LR LG @ T I = O ] I 1 60 ] S 430
LINAGE -COUN T E R, .. ittt e ettt e et et a et e et et e e e e s ea e e eaane e sbaneaaasan 431
L] 74 P 432
LI T ] 5 7 2 433
RV A = N X @ 1Y, = 1 5 433
15. INTRINSIC FUNCTIONS .t uuuuussssnunnnsssssnsmmssssssssssssssssssssssssssssssssssssssssssssssnsnsnsnnns 435
TYPES OF FUNCTION S . .11ttt ittt ettt ettt et ete et e ettt e e e ettt et e e e e et e e e e ra st e taaeseneeeeneeneeneanernernes 435
TS0 =1 5P 435
RETURNED VA LUE S, 11 ttututttittnineetttsesenesessssnetstsssensnsstsstentsiessssesteieetenenenessesssetesmesrsstereesenes 437
DATE CONVERSION FUNCTIONS. ..t ttttttt et eteateeeae e et eae e eaeaa e teaeeae e eae s aeaaeeeeaneeaneeaneraaernnernes 437
SUMMARY OF FUNCTIONS . .t ttttttitttttteteene e etentee et steaeaeeatratteatatatraeneataerertenrenereetenrneneenernesnens 437
Y 2 3 N 1 T 440
X O 2 T U] Lo 1 441
ADD-DURATION FUNCTION . 111t tttttttttttentuereettaeneereetessnetaerasteneraerartererertreasraerrerrerertererenes 44?2
ALLOCATED-OCCURRENCES FUNCTION. 111 tuttttttttteenentnstetesesteeenenstesessssenrsnensasesensaereneanrns 445
e NN LN 1 0 N T 446
ARGUMENT FUNCTION. 1ttt ttuttttttttetentraeraeeeatesseeneeteeraerasaerarearasseetensrersereraeernrereemeenernnes 447
ARGUMENT-LENGTH FUNCTION. ..ttt ittt ettt e e et e e e e et e e e e e et e a e e e e eae e raeanernennes 448

Elastic COBOL Language Reference Manual X



] | I 6 N 1T N, 448

17N N N 0 e 449
N 2N N 22 L0 o T 450
L o N G L0 T 0 451
CHAR-NATIONAL FUNCTION. .ttt ittt te ettt et et e et et e e e e e e e et et e e eaeeaeaaeaeraeaeaeaneeaneennenn 451
COLUMN FUNCTION 111 et ttttttteteteuetaraeteaseae e steasaeeaaraeaeaeeaerasteasaererteneneasersensensenesneenernerernens 452
CONVERT-DATE-TIME FUNCTION. .11t tttttttttttetesettereneensneteseseenernenstesrersasrsenersrenersrtenerenens 453
(L@ 11 TN 1] T 461
CURRENT-DATE FUNCTION. 11ttt tutttttteuttersstentaeertensaeereesrssereasrssseearaersretaeiersrrnrnrrrrernes 462
DATE-OF-INTEGER FUNCTION. .ttt ittt et ettt e te et e e e et et ee e e e e eaeeaarartenraereeeenenes 463
DATE-TO-YYYYMMDD FUNCTION. .ttt ttttutueutteteseetentenenetesesrenernsnenstrsrensnearnenesesrsieneneneerrneenes 464
DAY-OF-INTEGER FUNCTION. 11ttt ttttitititettieeie sttt e eteasaesasiasteneeastsstenteieesraeneeneasrsetsensenes 465
DAY-TO-YYYYDDD FUNCTION. 11ttt ututtttttueneteetenrneeaerassenetaerertenreneesrsrnreaersrarenraerersrenrnereeenns 466
()] S o I AN T Tl U T 1T 467
R 0N T 468
o L6 N 1T 468
s 0 I N T T T 469
EXTRACT-DATE-TIME FUNCTION. ...ttt ittt ettt eaeeaea e e eteae e e tearaeeaarteaeneaerneraertensenes 470
FACTORIAL FUNCTION. ¢t tuttttttttteeetaeteseaeaseneaeasaeteseaeensaraenetrsrereetaesssstrerensnesneresrernenersenen 482
L T U T T 483
FIND-DURATION FUNCTION. ..ttt ettt ettt ettt et et e e e e et e e e ee e e e e e ea e e eae et eaeeneaaeaerneraeaeanennennes 484
HIGHEST-ALGEBRAIC FUNCTION. 1.t ttitii ittt e ae et e e e te e et et et e e et et e e eeenerneraeetennenes 486
INTEGER FUNCTION. 1ttt tttttttttetnetetetesseeeasaesesesseenenensneteseseeensaenenstresensnrnsneseneneesenenersenenens 487
INTEGER-OF -DATE FUNCTION. 1t tttttttttietttttteeieettasneitastassenstasiesteateieesrsenerereasrsstenraeiereenns 488
INTEGER-OF-DAY FUNCTION. . .1t ttttttttittttttteteeieeteasneereetratneatasrarteraeaererteraerersrarenraaerertenrnes 489
INTEGER-PART FUNCTION. 1.ttt ttttttttttteteteaee e eteaeaeeaaraeteneaeae e etaaraeeatraraeeaeatraeneenererertensenes 490
I L@ I T 0N T P 490
LENGTH-AN FUNCTION. 11t tttttiititttetre ettt aaraesensestasteatae e etraeneeeasraerentasiarterensenssneensrnes 492
I LN L T T @) 494
LOCALE-DATE FUNCTION. 1ttt tttttttttttetrttteteeen e etetereetsteatae e traatentaererteteraerertrntnenraerarseenenes 495
LOCALE-TIME FUNCTION. 111t tututtttetetttenenensneseseseeenenenstetrsessesasaenetrsrenensarnsnesenenerseserersenemnrnes 497
[ 12 U T T 499
[ 13010 TN N T 0 ) 499
LOWER-CASE FUNCTION. ..ttt tuttttttttetteeettaeteeaererseteateteeteneaeeaeeteseaearatrartenenenereenernererensenes 500
LOWEST-ALGEBRAIC FUNCTION. ..ttt ttttttttteetetesesteeenenetetrarereeasneastetrareenrsnessnensrsenersreneies 501
7 T8N T 1T 502
L= SN I 0N 1T 503
IMEDIAN FUNCTION .ttt ettt ettt et et ettt et e et e et e et et e e e et e e ta e e et raeaererartenenenereeteneaaeneeneenes 504
MIDRANGE FUNCTION. 111t ttttttntnttetetetteenensassessaestenenenenstesrsesrerasneaetesrsaenenrasnenenersenersrenersenen 505
TN I O N T 1T 505
15 20 0N T 506
NATIONAL-OF FUNCTION 111ttt sttt ettt e aee et et ettt tatataeaeaerartentae e rteateaseasaaeeneenes 508
N LY Y 7 I T T P 508
I L 17 I O U N T 1T 509
I L 17 IR e N 1T 510
L 1 I 2 U T 1T 511
ORD-MAX FUNCTION 1111 tuttttttttnentnenenstreeenensaetesrereensaeassetrereerrtesrsrsrerearasasreaersereaerereneres 512
ORD-IMIN FUNCTION . 111ttt ttttttte e eteatsee e tseasaetas s ssensestsstenteiersraestaereetraeeeneensiseiseisensensenes 513
L N AV I U N T 1T N 513
I o T T 514
PRESENT-VALUE FUNCTION. ..ttt ttttitttttetetetetereeeaeteseaeerentaeneaetrareaeetaeneasraenseseensrsenerernenes 515
RANDOM FUNCTION. 1ttt ttttttttetsssesensessssentaeestsseseetsesssssereasrssseneaemsrseentaeisrenrasrtereeeernns 516
LA AN [ € R T N 1T T 517
L 1Y L8 T ) 517
REVERSE FUNCTION. .1t utututtttttttttteeuetettaesetasnenstssre e eraetesesrerensenenstrsrsrerenrnenenessenensrenerens 519

Elastic COBOL Language Reference Manual Xi



RS [ 1 I 1N 1 ] 519

S 1NV LT 1 ] T 520
SOUNDEX FUNCTION . 4ttt tttattetttstssneestsssestssssssestsisssesssenetstsestemmeststemtarststeraeiennare 521
{0 g I VN (o 1o N PP PP 522
STANDARD-COMPARE FUNCTION. ..ttt ittt e ettt et e e et e e e e e e e e e st e rae s eesneeaneaaaeaaernens 523
STANDARD-DEVIATION FUNCTION. .ttt ttittttittttataeesesasteeesrasseeasssssseraeiaetsettaasensansenrrnernes 524
SUBTRACT-DURATION FUNCTION. 11ttt tttatsttttttetenesetese e tassesssessaetsnssesestseenserentrterenersens 524
L1 1Y I 0T ) 528
7 AV 11T ) 529
TEST-DATE-TIME FUNCTION. ..t ttitttiitittteittt it isteestasaastaetstaetatastatestasaasttetseaststiseareriarenssrenses 530
UPPER-CASE FUNCTION. 11ttt ttttitttittttttatatieettassestestsssetasisssessstaststtestsentastsssetearasisstesiseiseisens 532
URL-DECODE FUNCTION .ttt et tuttttttattattseastatassasssessasrasssseeatasesssersssrtastaseraseraesrrsessssassenseens 533
URL-ENCODE FUNCTION. ..ttt tttttetintee et tataa e eae s s s saeaa e ea e s e ae s s s rasassasesasssarsanraaseeasesneanns 533
RN 2 4 N L0 i U T T ) 534
WHEN-COMPILED FUNCTION. .ttt tuttitttttttntnitaeseaesta e tasssssssasetassesssesse s ttesesesenseseenssreneans 535
YEAR-TO-YYYY FUNCTION . 1ttt tuttuttatnttntesensenessenstaetasssatesestaessestassssstatestasssessensraersenserasernnens 536
16. STANDARD CLASSES. .. iccuttetssnssssnssssnssssssssssssssssssssssssssssssnssssnssssnnsnsnnsnnnnnsss 538
IN D EX e e e s s s e s s e s s s s s s s s s s e s e e e e e A e A A R A A R A e A AR EE AR R EEEEEEEEEEEEE 539

Elastic COBOL Language Reference Manual Xii



Table of Figures

Fixed form source reference fOrMAL..............ueiiiiiiiiiieii e 11
(O{@ ] S0 ] e o= = Tox (T T S 35
Types Of USEr-defiN@d WOITS. ........cooiiiiiiieeeee ettt a e e e e e e e e e e e eeeeeeeeenran e aeees 37
MNEMONIC AEVICES FECOGNIZEMU. ........cceeee i e e s e e e e e e e e e e e e eeeearaanns 40
U o (N = a T g I g =T = U (=] = PP 51
F N g1 = oI @] o= = (o] = 67
R P a0 g =Y @ 1= = o RS 68
Combinations of symbols in arithmetic eXPreSSIONS.........oooviv i 69
LOgiCal OPEratOrs MEANINGS. .. . e eetetitieeeeee ettt ettt e e e e e e e e e e e e s e s s bbb bbb e e e reeeeeeeaeeeeeeennes 77
Combinations of conditions, logical operators, and parentheses.............ccccccviii i, 78
Abbreviated combined relation CONAItION.............ooiiiiiiiii e 79
Yo (=T=T @ 0] (o gl N[0 g1 01T R 96
KEYSIIOKE VANBDIES. ...ttt e e e e e e e e e s b e e e e e 97
CRT StatuS TaDIE... ..ottt e e e e e st e e e e e e e e e e eeeaeeeene 102
Handle-Component TabIe.........coooiiiiiee e e e e e e e e e e aaas 184
Graphical SCREEN SECTION COlOIS.....ccuiiiiiiiiiiiiiiiiiiii ettt e e 189
COBOL Type to Java Method REefEreNCe.........cooeiiiiiiii e 204
Elementary Item SYMDOIS. ... ... 222
Category and type Of @AItING.......cccoiiiiiiii e e e e e 224
Results of fixed INSertion €ditiNg.........c..oiiiiiiiii e e e e e e e eaas 225
Results of floating INSErtion @ditiNg............couuiiiiiiiiii e 226
PICTURE symbol order Of PreCEUBNCE. ..........uuuiiiiiiiiiiiiiieiee ettt e e e e e e e eenees 228
IMpPerative StatEMENT NAMES. ... ... ittt e e e e e e e e e e e e e s s s s s nn e eeeeeeeees 263
o] ol Yot ] 0TI (=] g1 0] 4= Lo ] P 265
Base Invoke Parameter Table..........cc.uviiiiiiiii e 337
Category of figurative constants used in the MOVE statement............cccooccvvveeiinniiieeee, 348
Validity of types of MOVE Stat@mMeENtS.........ccooii i e e e e eeenns 351
Opening available and unavailable files (file not currently open)........ccccceeeviiiiiiiiiiiiiiieieiiiiiinn, 354
Opening available shared files that are currently open by another file connector..................... 354
Permissible StatEMENIS. .. ... i e e 355
Validity of operand combinations on format 1 SET statements...........ccccevvevveiiniiii i e e, 390
Q= o] (=20 8 10 od 1T} o PSP 438

Elastic COBOL Language Reference Manual xiii



1.Scope

Programming language COBOL

Information technology - Programming languages, their environments and system
software interfaces.

This documentation specifies the syntax and meaning of programs written in Elastic
COBOL. lIts purpose is to promote a high degree of machine independence in
COBOL programs to permit their use on a variety of data processing systems.
Machine independence is achieved by executing COBOL in the Java Virtual
Machine (JVM).

This documentation specifies:

. The form of a program written in Elastic COBOL.

. The effect of compiling and executing such a program.

. The manner in which programs may be combined to form run-units.

o The elements of the language for which meaning is explicitly undefined.

. The elements of the language that is dependent on the capabilities of the processor.

Elastic COBOL Language Reference Manual 1



2.Normative References

The following standards contain provisions which, through reference in this text,
constitute provisions of Elastic COBOL. At the time of publication, the editions
indicated were valid. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO/IEC 646:1991, Information technology - ISO 7-bit coded character set for
information interchange.

1SO 1001:1986, Information processing - File structure and labeling of magnetic
tapes for information interchange.

ISO 8601:1988, Data elements and interchange formats - Information
interchange - Representation of dates and times.

ISO/IEC 9945-2:1993, Information technology - Portable Operating System
Interface (POSIX) - Part 2: Shell and Utilities.

ISO/IEC 10646-1:1993, Information technology - Universal Multiple-Octet Coded
Character Set (UCS) - Part 1: Architecture and Basic Multilingual Plane.

ISO/IEC 10646-1:1993/Amd.1:1996, Information technology - Universal Multiple-
Octet Coded Character Set (UCS) - Part 1: Architecture and Basic Multilingual
Plane, AMENDMENT 1: Transformation Format for 16 planes of group 00 (UTF-
16).

ISO/IEC 10646-1:1993/Amd.2:1996, Information technology - Universal Multiple-
Octet Coded Character Set (UCS) - Part 1: Architecture and Basic Multilingual
Plane, AMENDMENT 2: UCS Transformation Format 8 (UTF-8).

ISO/IEC CD 14651, International String Ordering - Method for Comparing
Character Strings and Description of a Default Tailorable Ordering.

Elastic COBOL Language Reference Manual 2



3.International Standard Conformance

Conforming implementation

Elastic COBOL conforms to ANSI X3.23-1985 at the highest level of compliance plus
additional syntax and functionality.

Elastic COBOL does not support the optional Communications and Report Writer
facilities.

Acceptance of standard language elements

There are general rules in standard COBOL that could have been classified as
syntax rules. These rules are classified as general rules for the purpose of avoiding
syntax checking, and do not reflect errors in standard COBOL. Elastic COBOL flags
these errors on an individual basis.

Interaction with non-COBOL programs

Elastic COBOL provides a facility for directly interacting with Java classes on all
systems and system programs accessible from the Java environment. On certain
platforms, Elastic COBOL provides a facility for CALLing native programs written in
C and COBOL.

Interaction between COBOL implementations

On certain platforms, Elastic COBOL provides a facility for CALLing native programs
written in C and COBOL.

Implementer-defined language elements

Elastic COBOL includes additional language elements beyond standard COBOL.

Processor-dependent language elements

Processor refers to the entire computing system that is used to translate and
execute source units, consisting of both hardware and relevant associated software.
Language elements that pertain to specific processor components are listed in
Processor-dependent language element list.

When support is claimed for a specific component, all language elements that
pertain to that component are implemented.

Reserved words

Elastic COBOL recognizes as reserved words all reserved words of ANSI COBOL
1985. Elastic COBOL additionally recognizes its own extended reserved words.

Elastic COBOL Language Reference Manual 3



Standard extensions

A standard extension is supported syntax for a facility defined in standard COBOL
where support for that entire facility is not claimed.

Nonstandard extensions

Elastic COBOL includes language elements and functionality not defined in standard
COBOL. Because of additional reserved words introduced, some compilation
groups that meet the requirements of standard COBOL cannot be directly compiled.
The ‘wordlist’ compiler option may be used to remove conflicting reserved words.

Substitute or additional language elements

Elastic COBOL does not require the inclusion of substitute or additional language
elements in the compilation group in order to accomplish functionality identical to
that of a standard COBOL language element.

Archaic language elements

Archaic language elements should not be used in new compilation groups because
better programming practices exist. Because of widespread use in existing
programs, there is no schedule for deleting archaic elements from standard COBOL,;
however, this may be reevaluated for any future revisions of standard COBOL.

Obsolete language elements

Obsolete language elements will be removed from the next revision of standard
COBOL.

No language elements shall be deleted from the next revision of standard COBOL
without having first been identified as obsolete.

Elastic COBOL can currently produce informational messages for items marked as
obsolete in X/Open by use of the —-FLAG:OBSX compiler option.

Externally provided functionality

Elastic COBOL requires additional runtimes from other vendors to operate certain
extended functionality such as CICS client or MQSeries; these additional runtimes
are mentioned in the appropriate sections. The Elastic COBOL runtime in
combination with the standard Java runtime are sufficient for standard COBOL
functionality and most extended Elastic COBOL functionality.

Limits
In general, standard COBOL specifies no upper limit on such things as the number
of statements in a compilation group or the number of operands permitted in certain

statements. Elastic COBOL does possess certain practical limits of these possibly
limitless operations. These are documented in the appendix.

Elastic COBOL Language Reference Manual 4



User documentation

Elastic COBOL satisfies the user documentation requirements specified for a
conforming implementation. This documentation is the primary documentation
source for Elastic COBOL.

Character substitution

The definition of the COBOL character set presents the complete COBOL character
set for Elastic COBOL. Elastic COBOL additionally supports Unicode characters in
the range of hex 0080-FF79 as acceptable COBOL characters.

A conforming compilation group

A conforming compilation group is one that does not violate the explicitly stated
provisions and specifications of Elastic COBOL. In order for a compilation group to
conform to standard COBOL, it shall not include any language elements not
specified in this documentation.

Situations in which the results of executing a statement are explicitly undefined or
unpredictable are identified in undefined language element list. A COBOL
compilation group that allows these situations to happen is a conforming compilation

group.

Elastic COBOL Language Reference Manual 5



4.Description techniques

The techniques used to describe standard COBOL are:

o General formats

o Rules

o Arithmetic expressions
o Natural language text

General formats

General formats specify the syntax of the elements of Elastic COBOL and the
sequence of arrangement of those elements.

The words, phrases, clauses, punctuation, and operands in each general format
shall be written in the source program in the sequence given in the general format,
unless otherwise specified by the rules of that format.

When more than one arrangement exists for a specific language construct, the
general format is separated into multiple formats that are numbered and named.

Elements used in depicting general formats are:

o Keywords

o Optional words

o Operands

J Level numbers

o Options

J Brackets

o Braces

o Ellipses

o Punctuation

o Special characters

o Meta-terms that refer to other formats
Keywords

Keywords are reserved words or context-sensitive words. They are shown in
uppercase and underlined in general formats. Certain punctuation keywords are not
underlined where doing so would cause confusion.

Elastic COBOL Language Reference Manual 6



Optional words

Optional words are reserved words or context-sensitive words. They are shown in
uppercase and not underlined in general formats. They may be written to add clarity
when the clause or phrase in which they are defined is written in the source unit.

The reserved words ‘IS’ and ‘ARE’ are always optional and may always be omitted.

Operands

An operand is an expression, a literal, or a reference to data. Operands are shown
in lowercase and represent values or identification of items, conditions, or objects
that the programmer supplies when writing the source unit.

The word 'integer' in a general format refers to an unsigned non-zero numeric literal.

Operands in general formats are suffixed with a number (-n) for unique reference in
associated rules.

Level numbers

Specific level numbers appearing in general formats are required to be specified
when the formats in which they appear are written in the source unit. Level number
forms 01, 02, ..., 09, and 1, 2, ..., 9, respectively, may be written interchangeably.

Any number of 0's may precede the level number.
Options

Options are indicated in a general format by vertically stacking alternative
possibilities within brackets or braces or by listing the options with a pipe (|) choice
character separating each choice option in the group. An option is selected by
specifying one of the possibilities from a stack of alternative possibilities or by
specifying a unique combination of possibilities from a series of brackets or braces.

Brackets

Brackets, [ ], enclosing a portion of a general format indicate that one of the
alternatives contained within the brackets may be explicitly specified or that portion
of the general format may be omitted. Brackets surround optional groups.

Braces

Braces, { }, enclosing a portion of a general format indicate that one of the
alternatives contained within the braces shall be explicitly specified or is implicitly
selected. If one of the alternatives contains only optional words, that alternative is

Elastic COBOL Language Reference Manual 7



the default and is selected unless another alternative is explicitly specified. Braces
surround required groups.

Ellipses

In the general formats, the ellipsis represents the position at which the user elects
repetition of a portion of a format. The portion of the format that may be repeated is
determined as follows:

Given an ellipsis in a format, scanning right to left, determine the right bracket or
right brace delimiter immediately to the left of the ellipsis; continue scanning right to
left and determine the logically matching left bracket or left brace delimiter; the
ellipsis applies to the portion of the format between the determined pair of delimiters.

In text other than general formats, the ellipsis ( ... ) shows omission of a word or
words when such omission does not impair comprehension. This is the
conventional meaning of the ellipsis, and the use becomes apparent in context.

Punctuation

The separators comma and semicolon may be used anywhere the separator space
is used in the formats. In the source program, these separators are
interchangeable.

The separator period, when used in the formats, has the status of a required word.

Special characters

Special character words, punctuation characters, and separators that appear in
formats, although not underlined, are required when such portions of the formats are
used.

Meta-terms

Meta-terms appear in lowercase in general formats and are the names of
subsections of general formats. Subsections are specified below the main format
and are introduced by the phrase ‘where x is:', with x replaced by the meta-term.

Rules

Syntax rules

Syntax rules supplement general formats and define or clarify the order in which
words or elements are arranged to form larger elements such as phrases, clauses,
or statements. Syntax rules may also either impose restrictions on individual words
or elements or relax restrictions implied by words or elements.

Elastic COBOL Language Reference Manual 8



These rules are used to define or clarify how the statement shall be written, i.e., the
order of the elements of the statement and the restrictions or amplifications of what
each element may represent.

General rules

A general rule defines or clarifies the meaning or relationship of meanings of an
element or set of elements. It is used to define or clarify the semantics of the
statement and the effect that it has on either execution or compilation.

Arguments

Argument rules specify requirements, constraints, or defaults associated with
arguments to intrinsic functions.

Returned values
Returned value rules specify the semantics of an intrinsic function.

Arithmetic expressions

Some rules contain arithmetic expressions that specify part or all of the results of the
COBOL syntax. In presenting the arithmetic expressions, the following additional
notation, or different meaning for notation, is used.

Double subscripts

When a double subscript (term-jn) appears as an operand of an expression it refers
to the n-th position/occurrence of term-j. Term-j will be locally substituted by an
appropriate element of syntax.

Ellipses

Ellipses show that the number of terms and operators is variable.

Parentheses

Some arithmetic expressions contain one or more pairs of parentheses that do not
change the order of evaluation. They are included for clarity.

Elastic COBOL Language Reference Manual 9



Natural language text
A substantial portion of the COBOL specification is described in natural language.

Syntax rules and semantic requirements may be included in the natural language
description and are recognized by their context.

Hyphens in text

All hyphens appearing at the end of a line of text are the hyphens of meta-terms,
keywords, optional words, or operands and are included in the term; otherwise,
hyphens are not used to divide words at the end of a line.

5.Reference format

Reference format specifies the conventions for writing COBOL source programs,
COBOL library text, and compiler directives. Elastic COBOL provides multiple
reference formats, including fixed-form, free-form, and variable-form. Elastic
COBOL attempts to automatically detect and use the appropriate format between
fixed-form and free-form, but the format may be explicitly selected using compiler
options.

Variable length is present for compatibility with some COBOL compilers and may
only be selected using the compiler option; it is the same as fixed-form except that
the right margin begins at column 16384. It is recommended not to use variable
length reference format for new code.

When Elastic COBOL is automatically detecting the reference format, the COBOL
source program and COBOL library text may be in different formats. Aside from
using third-party libraries, the recommended course is to use the same format for
both source program and library text.

Elastic COBOL is also capable of handling multiple file encodings, though only one
file encoding may be used during a single compilation unit. Elastic COBOL supports
ASCII, EBCDIC and Unicode (big- or little-endian) source code automatically on all
platforms. This eases cross-platform development and remote editing.

The auto-detection method works as follows. If the first two characters are the
Unicode directional markers, then Unicode is used. The first non-blank line is found,
and then the first non-blank ASCII character is found. If the character is in column 7
or greater, fixed-form ASCII is used. If the character is an EBCDIC digit, EBCDIC
fixed-form source code is used. If the character is an EBCDIC character capable of
starting COBOL program source code, EBCDIC free-form source code is used. If
the character is not an ASCII digit, free-form is used; otherwise fixed-form is used.

The following rules apply to the indicated reference formats:

1. Free-form and fixed-form

Elastic COBOL Language Reference Manual 10



a. Reference format is described in terms of character positions on a line on an
input-output medium.

b. Elastic COBOL accepts source programs written in reference format.

c. Elastic COBOL limits lines based on the carriage-return / linefeed pair or
linefeed.

NOTE - The previous COBOL standard did not state what kinds of characters
were used, but alphanumeric was generally assumed.

2. Fixed-form

a. Elastic COBOL processes fixed-form reference format lines as though the
source program had been logically converted from fixed form to free form.
(See Logical conversion.)

b. After logical conversion, the equivalent free-form source program shall meet
the requirements of free-form reference format, except that all characters of
the computer's character set shall be retained in alphanumeric literals and
comments. (See rule 3b.)

3. Free-form

a. The number of character positions on a line may vary from line to line,
ranging from a minimum of 0 to a maximum of 255. This maximum is raised
to 16383.

b. The carriage-return / linefeed pair or linefeed terminates a free-form line,
including comment lines, and alphanumeric literals may contain ASCII
characters 1-255 (based at 0).

Fixed-form reference format

The format of a fixed-form reference format line is depicted in figure 1, Fixed-form
source reference format.

hdargin hargin fargin hlargin
L C A R

|1|7|3|-'-|h|-:~:|f'|;;|u|1[;|1'|1y|1ﬂs| - I

- -

——

— s

§ T N .
Sequence Mumber Area _ Program-text Area
Indicator Area

Fixed form source reference format

Margin L is immediately to the left of the leftmost character position of a line.
Margin C is between the 6th and 7th character positions of a line.
Margin A is between the 7th and 8th character positions of a line.

Margin R is immediately to the right of the rightmost character position of a line. The
rightmost character position of a line is 72.

Elastic COBOL Language Reference Manual 11



The sequence number occupies six character positions (1-6), and is between
margin L and margin C.

The indicator area is the 7th character position of a line.

The program-text area begins in character position 8 and terminates with the
character position immediately to the left of margin R.

Sequence numbers

The sequence number area may be used to label a source program line. The
content of the sequence number area is defined by the user and may consist of any
character in the computer's character set. There is no requirement that the content
of the sequence number area appears in any particular sequence or be unique.

Continuation of lines

Any sentence, entry, phrase, or clause may be continued by starting subsequent
line(s) in the program-text area. These subsequent lines are called the continuation
line(s). The line being continued is called the continued line. Any COBOL word,
literal, or PICTURE character-string may be broken in such a way that part of it
appears on a continuation line. A compiler directive shall be contained entirely on
one line. A compiler directive shall not be specified between the lines of a continued
character string.

NOTE 1 - Continuation of COBOL words is an archaic feature and its use should be
avoided

A hyphen in the indicator area of a line indicates that the first nonblank character in
the program-text area of the current line is the successor of the last nhonblank
character of the preceding line, excluding intervening comment lines or blank lines
without any intervening space. However, if the continued line contains an
alphanumeric literal without a closing delimiter, the first nonblank character in the
program-text area of the continuation line shall be a quotation symbol matching the
quotation symbol used in the opening delimiter. The continuation starts with the
character immediately after that quotation symbol. All spaces at the end of the
continued line are considered part of the literal.

If there is no hyphen in the indicator area of a line, it is assumed that the first
nonblank character in the line is preceded by a space.

All characters composing any two-character or three-character separator shall be
specified on the same line.

National literals may only be continued using concatenation. (See continuation lines
for information about multiple lines).

NOTE 2 - Literals may be concatenated to achieve continuation.

Elastic COBOL Language Reference Manual 12



Blank lines

A blank line is one that is blank from margin C to margin R, inclusive. A blank line
may appear anywhere in the source program. (See Continuation of lines.)

A blank line for purposes of automatic detection of source format is one that is blank
in all character positions.

Comments

A comment may be a comment line or an in-line comment.

Any combination of characters from the computer's character set may be included in
a comment.

Comments shall be listed if a listing is being produced, but shall serve only as
documentation and shall not be checked syntactically.

Comments may include Unicode characters or other DBCS characters.
Comment lines

A comment line is any line with an asterisk or slant in the indicator area of the line. A
comment line may be written as any line in a compilation-group or as any line in
library text. The slant in the indicator area causes page ejection prior to printing the
comment line in the listing of the source program; an asterisk in the indicator area
causes printing of the line at the next available line position in the listing.

In-line comments

The two contiguous COBOL characters *>' or the character ‘|" is a comment
indicator. An in-line comment consists of a comment indicator followed by all
successive character positions on the same line up to margin R, inclusive. An in-line
comment may be written in the program-text area on any line of a compilation-group

or library text except on a compiler directive line, wherever a separator space may
be written.

For purposes of evaluating library text, pseudo-text, and source text, an in-line
comment shall have the value of a separator space.

Block Comments

A block comment is a comment which starts on one line and which may continue for
multiple lines, including the other forms of comments. Its typical use is to block out
a section of code. A block comment must begin and end in Area A or Area B, not the
indicator area. The beginning of a block comment is marked using the two
contiguous characters '/* and the ending of a block comment is marked using the
two contiguous characters '/*'.

Elastic COBOL Language Reference Manual 13



Debugging lines

A debugging line is any line with the debugging symbol, character 'D' or 'd’, in the
indicator area of the line. Any debugging line that consists solely of spaces from
margin A to margin R is considered the same as a blank line. Successive
debugging lines may be specified.

A debugging line is permitted any place in the source unit after the SOURCE-
COMPUTER paragraph.

A debugging line is permitted at any point in the source unit, including before the
IDENTIFICATION DIVISION.

In-line debugging

A debugging line may optionally marked in Area or Area B by using the three
contiguous characters '>>D'.

Debugging Line Notes

A debugging line is an obsolete element in this draft International Standard and is to
be deleted from the next revision of standard COBOL.

Free-form reference format

In free-form reference format, the text of the source program can be written
anywhere on a line, except that there are specific rules for comments, debugging
lines, and continuation.

Continuation of lines

Continuation of lines is not permitted in free-form. Continuation of nonnumeric
literals is permitted using concatenation (&).

Blank lines

A blank line is one that contains nothing but space characters or is a line with zero
character positions. A blank line may appear anywhere in a compilation-group or
library text.

Blank lines interspersed among lines containing the parts of a literal shall be listed if
a listing is being produced, but shall have no effect on the meaning or compilation of
the literal.

Elastic COBOL Language Reference Manual 14



Comments

The two contiguous COBOL characters *>' or the character ‘|’ is a comment
indicator. A comment consists of a comment indicator followed by all successive
character positions on the line. A comment terminates at the end of the line on which
the comment is written.

Any combination of characters from the computer's character set may be included in
a comment, except as indicated in Reference format, rule 3b.

Comments shall be listed if a listing is being produced, but shall serve only as
documentation and shall not be checked syntactically.

A comment may be a comment line or an in-line comment.
Comment lines

A comment preceded exclusively by zero, one, or more spaces on the line on which
the comment is written is a comment line. A comment line may be written as any line
in a compilation-group or as any line in library text.

Comment lines interspersed among lines containing the parts of a literal shall be
listed if a listing is being produced, but shall have no effect on the meaning or
compilation of the literal.

In-line comments

A comment preceded on a line by one or more COBOL words or character-strings
immediately followed by one or more separator spaces is an in-line comment. An in-
line comment may be written wherever a separator space may be written on any line
of a compilation-group or library text except on a compiler directive line.

For purposes of evaluating library text, pseudo-text, and source text, an in-line
comment shall have the value of a separator space.

Block Comments

A block comment is a comment which starts on one line and which may continue for
multiple lines, including the other forms of comments. Its typical use is to block out
a section of code. A block comment must begin and end in Area A or Area B, not the
indicator area. The beginning of a block comment is marked using the two
contiguous characters '/*' and the ending of a block comment is marked using the
two contiguous characters '/*'.

Debugging lines

The three contiguous COBOL characters '>>D' immediately followed by a space are
a debugging indicator. A debugging line consists of a debugging indicator, optionally
preceded by one or more space characters, followed by all successive character
positions on the line. A debugging line is terminated at the end of the line.

Elastic COBOL Language Reference Manual 15



A ‘D’ or ‘d’ followed by a space at the beginning of a free format line shall indicate a
debugging line.

A debugging line may be written as any line in a source unit after the SOURCE-
COMPUTER paragraph. Successive debugging lines may be specified.

After all COPY and REPLACE statements have been processed, a debugging line
shall have the characteristics of a comment line if the WITH DEBUGGING MODE
clause is not specified in the SOURCE-COMPUTER paragraph.

The contents of a debugging line shall be such that a syntactically correct program
is formed with or without the debugging line.

In-line debugging

A debugging line may optionally marked in Area or Area B by using the three
contiguous characters '>>D'.

Debugging Line Notes

A debugging line is an obsolete element in this draft International Standard and is to
be deleted from the next revision of standard COBOL.

Logical conversion

Source text and library text in fixed-form reference format shall be logically
converted at compile time to equivalent free-form reference format, without the
restriction of maximum line length.

NOTE - Fixed-form reference format is logically converted during compilation to
free-form to simplify understanding of other rules of the language, for example, the
COPY statement with the REPLACING phrase and the REPLACE statement.

Logical conversion shall have the effect of taking place after the processing of the
copy action of a COPY statement and before the replacing action of a COPY
statement with the REPLACING phrase or of a REPLACE statement.

The rules given below shall be applied logically for each fixed-form line to produce a
free-form line. For purposes of these rules, the character positions contained
between margin A and margin R of a fixed-form source line are designated as
"program-text" and retain this designation in the equivalent free-form source line.

1. If the indicator area of the fixed-form line contains a character 'D' or 'd', the
equivalent free-form line shall contain a debugging indicator in the first four
character positions, followed by the program-text from the fixed-form line.

2. If the indicator area of the fixed-form line contains a hyphen, the equivalent free-
form line shall contain a space in character position one followed by the
program-text from the fixed-form line. For purposes of this conversion, this free-
form source line is a continuation line and the closest preceding free-form line
that is not a comment line, a blank line, or a compiler directive is the continued
line. Free-form continuation is completed as follows:

Elastic COBOL Language Reference Manual 16



a. If the last character-string in the free-form continued line begins an
alphanumeric or national literal that is not terminated by a closing delimiter,
the free-form program-text in the continued line is appended with a closing
delimiter, immediately followed by a hyphen.

b. Otherwise, the first character-string in the free-form continuation line is
appended, with no intervening space, to the last character-string in the
program-text of the free-form continued line. The first character-string in the
free-form continuation line is replaced with blanks.

3. If the indicator area of the fixed-form line contains an asterisk (*), the equivalent
free-form line shall contain a comment indicator in the first two character
positions followed by the program-text from the fixed-form line.

4. If the indicator area of the fixed-form line contains a slash (/), the equivalent free-
form line shall contain a PAGE compiler directive specifying as commentary the
program-text from the fixed-form line.

5. Otherwise, the equivalent free-form line shall contain the program-text from the
fixed-form line.

Thereafter, compilation continues with the logically equivalent free-form source.

Elastic COBOL Language Reference Manual 17



6. Compiler directing facility

The compiler directing facility controls the processing of a compilation group. It
consists of compiler directing statements for specifying source text manipulation and
compiler directives for specifying compilation options.

Source text manipulation

Source text manipulation provides a facility to insert and replace source text as part
of the compilation of a compilation group. Source text manipulation involves
compiler directing statements and sentences, library text available to the compiler at
compile time, and source text.

Source text manipulation elements

Language elements referenced and not defined in Source text manipulation have
the meaning defined in Language fundamentals.

Compiler directing statements and sentences

A compiler directing statement instructs the compiler to take a specific action during
compilation. Compiler directing statements in the source text manipulation facility
are the COPY statement, REPLACE statement and preprocessing statements
terminated by a separator period.

Source text and library text

Source text is the primary input to the compiler for a single compilation group.
Library text is secondary input to the compiler as a result of processing a COPY
statement.

Source text manipulation processes source text and library text as a sequence of
one or more character-strings, separators, and comments. Source text and library
text enclosed within pseudo-text delimiters are processed as pseudo-text.

Pseudo-text

Pseudo-text may be any sequence of zero or more text-words, comments, and the
separator space bounded by, but not including, pseudo-text delimiters.

Text-words

A text-word is a character or a sequence of contiguous characters in COBOL source
text, library text, or pseudo-text that forms any of the following:

1. a separator, except for: a space; a pseudo-text delimiter; the opening and
closing delimiters for alphanumeric, Boolean, and national literals; and the right
and left parentheses, regardless of their context; or

2. an alphanumeric, Boolean, or national literal including the opening and closing
delimiters that bound the literal; or

Elastic COBOL Language Reference Manual 18



3. any other sequence of contiguous COBOL characters bounded by separators,
except for: comments and the word ‘COPY".
COPY statement

The COPY statement incorporates library text into a COBOL compilation group.

General format
Format1:

COPY { literal-1 | text-name-1 } [NOLIST] [SUPPRESS] [ {OF|IN}
{literal-2 | library-name-1}] [NOLIST] [SUPPRESS]
[ REPLACING [LEADING|TRAILING|INDEPENDENT]
{ {==pseudo-text-1== | identifier-1 | literal-3 | word-1 }
BY {==pseudo-text-2 | identifier-2 | literal-4 | word-2} } ... ]

Format 2:

COPY RESOURCE { literal-1 | text-name-1} .

Syntax rules
Format1:

1.

10.
11.
12.

A COPY statement may be specified anywhere in a compilation group that a
character string or a separator, other than the closing delimiter of a literal, may
appear except that a COPY statement shall not appear within a COPY
statement.

A COPY statement shall be preceded by a space except when it is the first
statement in a compilation group.

A COPY statement shall be terminated by a separator period.
Within one COBOL library, each text-name shall be unique.

Literal-1 and literal-2 shall be alphanumeric literals and shall not be figurative
constants. Literal-1 shall refer to a filename offset from the current directory, or
offset from the directory specified by literal-2. Literal-1 and literal-2 shall be
specified according to the native filename, i.e., using ‘\’ as the separator in
Windows, /" in Posix, etc. Text-name-1 is treated as literal-1 and

Text-name-1 or literal-1 identifies the library text to be processed by the COPY
statement.

Pseudo-text-1 shall contain one or more text-words.
Pseudo-text-2 shall contain zero, one, or more text-words.

Character-strings within pseudo-text-1 and pseudo-text-2 may be continued in
accordance with the rules of reference format.

Word-1 or word-2 may be any single COBOL word except 'COPY".
Elastic COBOL allows a match buffer of 16384 bytes.

Pseudo-text-1 shall not consist entirely of a separator comma or a separator
semicolon.

Elastic COBOL Language Reference Manual 19



13. Pseudo-text-1 and pseudo-text-2 may contain debugging lines. A debugging line
is specified within pseudo-text if the debugging line begins in the source
program after the opening pseudo-text delimiter but before the matching closing
pseudo-text delimiter.

Format 2 :

1. literal-1 or text-name-1 refers to a resource file such as an image or audio clip to
be included. This statement is treated as commentary since resources must be
included separately, so the name is not checked for validity.

General rules

1. The compilation of a compilation group containing COPY statements is logically
equivalent to processing all COPY statements prior to the processing of the
resultant compilation group.

2. The syntactic correctness of library text cannot be independently determined.
Except for COPY and REPLACE statements, the syntactic correctness of a
COBOL source unit cannot be determined until all applicable COPY and
REPLACE statements have been completely processed.

Library text shall conform to the rules for COBOL reference format.
Debugging lines are permitted within library text.

The effect of processing a COPY statement is that the library text associated
with text-name-1 or the value of literal-1 is copied into the source text, logically
replacing the entire COPY statement beginning with the reserved word COPY
and ending with the separator period, inclusive.

6. If library-name-1 or literal-2 is unspecified, Elastic COBOL searches along the
path specified by —lib, if any, or the current PATH environment variable.

If the REPLACING phrase is not specified, the library text is copied unchanged.

If the REPLACING phrase is specified, the library text is copied and each
matched occurrence of pseudo-text-1, identifier-1, word-1, or literal-3 in the
library text is replaced by the corresponding pseudo-text-2, identifier-2, word-2
or literal-4.

9. For purposes of matching, identifier-1, word-1, and literal-3 are treated as
pseudo-text containing only identifier-1, word-1, or literal-3, respectively.

10. The comparison operation to determine text replacement occurs in the following
manner:

a. The leftmost library text-word that is not a separator comma or a separator
semicolon is the first text-word used for comparison. Any text-word or space
preceding this text-word is copied into the source text. Starting with the first
text-word for comparison and first pseudo-text-1, identifier-1, word-1, literal-
3, that was specified in the REPLACING phrase, the entire REPLACING
phrase operand that precedes the reserved word BY is compared to an
equivalent number of contiguous library text-words.

b. Pseudo-text-1, identifier-1, word-1, or literal-3 matches the library text only if
the ordered sequence of text-words that forms pseudo-text-1, identifier-1,
word-1, or literal-3 is equal, character for character, to the ordered sequence
of library text-words.

Elastic COBOL Language Reference Manual 20



c. The following rules apply for the purpose of matching:

o Each occurrence of a separator comma, semicolon, or space in
pseudo-text-1 or in the library text is considered to be a single space.
Each sequence of one or more space separators is considered to be a
single space.

o Except for the content of literals, each alphanumeric character is
equivalent to its corresponding national character and each lowercase
letter is equivalent to its corresponding uppercase letter, as specified for
the COBOL character set in COBOL character set.

NOTE - A concatenation expression, for example "A" & "B", is recognized as
three text-words for purposes of matching.

o A compiler directive line in source text shall be considered a single
text-word that does not match any text-word within pseudo-text-1 or
partial-word-1.

o A debugging indicator shall be treated as if it did not appear in the
line. Text-words within a debugging line participate in the matching.

o Comments or blank lines occurring in the source text and in
pseudo-text-1 are ignored.

d. If no match occurs, the comparison is repeated with each next successive
pseudo-text-1, identifier-1, word-1, literal-3, or partial-word-1, if any, in the
REPLACING phrase until either a match is found or there is no next
successive REPLACING operand.

e. When all the REPLACING phrase operands have been compared and no
match has occurred, the leftmost library text-word is copied into the source
text. The next successive library text-word is then considered as the leftmost
library text-word, and the comparison cycle starts again with the first pseudo-
text-1, identifier-1, word-1, literal-3, or partial-word-1 specified in the
REPLACING phrase.

f.  When a match occurs between pseudo-text-1, identifier-1, word-1, or literal-3
and the library text, the corresponding pseudo-text-2, identifier-2, word-2, or
literal-4 is placed into the source text. When a match occurs between
partial-word-1 and the library text-word, the library text-word is placed into
the source text with the matched characters either replaced by partial-word-
2 or deleted when partial-word-2 consists of zero text-words. The library
text-word immediately following the rightmost text-word that participated in
the match is then considered as the leftmost text-word. The comparison
cycle starts again with the first pseudo-text-1, identifier-1, word-1, literal-3, or
partial-word-1 specified in the REPLACING phrase.

g. The comparison operation continues until the rightmost text-word in the
library text has either participated in a match or been considered as a
leftmost library text-word and participated in a complete comparison cycle.

11. If the REPLACING phrase is specified, the library text shall not contain a COPY
statement and the source text that results from processing the REPLACING
phrase shall not contain a COPY statement.

Elastic COBOL Language Reference Manual 21



12. The source text that results from the processing of a COPY statement shall be in
logical free-form reference format. For purposes of compilation, text-words after
replacement are placed in the resultant source text in accordance with the rules
of free-form reference format. When copying text-words of pseudo-text-2 into
the source text, additional spaces may be introduced only between text-words
where there already exists a space or a space is assumed.

NOTE - A space is assumed at the end of a source line.

13. Comments or blank lines appearing in pseudo-text-2 are copied into the source
text unchanged whenever pseudo-text-2 is placed into the source text as a result
of text replacement. Comments or blank lines appearing in library text are
copied into the source text unchanged with the following exception: a comment
or blank line in library text is not copied if that comment or blank line appears
within the sequence of text-words that match pseudo-text-1.

14. If additional lines are introduced into the source text as a result of a COPY
statement, each text-word introduced appears on a debugging line if the COPY
statement begins on a debugging line or if the text-word being introduced
appears on a debugging line in library text. When a text-word specified in the
BY phrase is introduced, it appears on a debugging line if the first library text-
word being replaced is specified on a debugging line. Except in the preceding
cases, only those text-words that are specified on debugging lines where the
debugging line is within pseudo-text-2 appear on debugging lines in the resultant
source text. If any literal specified as literal-4 or within pseudo-text-2 or library
text is of a length too great to be accommodated on a single line without
continuation to another line in the resultant source text and the literal is not being
placed on a debugging line, additional continuation lines are introduced which
contain the remainder of the literal. If replacement requires that the continued
literal be continued on a debugging line, the program is in error.

15. If additional lines are introduced into the source text as the result of processing a
REPLACING phrase of a COPY statement, the indicator of the introduced lines
shall be the same as the indicator appearing on the line at which the replaced
text begins.

16. If the REPLACING phrase is not specified, the library text may contain a COPY
statement that does not include a REPLACING phrase. Recursive copying of
library text is not permitted; that is, the library text being copied shall not cause
the processing of a COPY statement that directly or indirectly copies itself.
Elastic COBOL supports 256 open files where this is supported by the operating
system; this open limit is shared with the main source files.

17. NOLIST or SUPPRESS is used to suppress the creation of a listing file for the
COPY contents. This is treated as commentary.

18. LEADING ensures that the REPLACING from text must be preceded by white
space.

19. TRAILING ensures that the REPLACING from text must be followed by white
space.

20. INDEPENDENT that the REPLACING from text must be preceded and followed
by white space.

Elastic COBOL Language Reference Manual 22



REPLACE statement

The REPLACE statement is used to replace source text in a separately compiled
COBOL source unit.

General format

Format 1 (replacing):
REPLACE [LEADING|TRAILING|INDEPENDENT] {==pseudo-text-1== BY ==pseudo-
text-2==} ...

Format 2 (off):
REPLACE OFF

Syntax rules

1. AREPLACE statement may be specified anywhere in a compilation group that a
character-string or a separator, other than a closing delimiter of a literal, may
appear.

2. AREPLACE statement shall be preceded by a space except when it is the first
statement in a compilation group.

A REPLACE statement shall be terminated by a separator period.
Pseudo-text-1 shall contain one or more text-words.

Pseudo-text-2 shall contain zero, one, or more text-words.

o 0o bk~ w

Character-strings within pseudo-text-1 and pseudo-text-2 may be continued in
accordance with the rules of reference format.

Elastic COBOL allows a match buffer of 16384 bytes.

Pseudo-text-1 shall not consist entirely of a separator comma or a separator
semicolon.

9. Pseudo-text-1 and pseudo-text-2 may contain debugging lines.
10. Compiler directive lines shall not be specified within pseudo-text-1 or pseudo-
text.

General rules

1. Except for COPY and REPLACE statements, the syntactic correctness of a
source unit cannot be determined until after all applicable COPY and REPLACE
statements have been completely processed.

Pseudo-text-1 specifies the source text to be replaced by pseudo-text-2.

A given REPLACE statement is in effect from the point at which it is specified
until the next occurrence of a REPLACE statement without the ALSO phrase or
the end of the separately compiled program is reached.

4. Any REPLACE statements contained in a source unit are processed after the
processing of any COPY statements contained in that source unit.

5. The comparison operation to determine text replacement occurs in the following
manner:

Elastic COBOL Language Reference Manual 23



a. Starting with the leftmost source text-word and the first pseudo-text-1 or
partial-word-1, pseudo-text-1 or partial-word-1 is compared to an equivalent
number of contiguous source text-words.

b. Pseudo-text-1 matches the source text if, and only if, the ordered sequence
of text-words that forms pseudo-text-1 is equal, character for character, to
the ordered sequence of source text-words.

c. The following rules apply for the purpose of matching:

o Each occurrence of a separator comma, semicolon, or space in
pseudo-text-1 or in the source text is considered to be a single space.

Each sequence of one or more space separators is considered to be a
single space.

o Except for the content of literals, each alphanumeric character is
equivalent to its corresponding national character and each lowercase
letter is equivalent to its corresponding uppercase letter, as specified for
the COBOL character set in COBOL character set.

NOTE - A concatenation expression, for example "A" & "B", is recognized
as three text-words for purposes of matching.

o A compiler directive line in source text shall be considered a single
text-word that does not match any text-word within pseudo-text-1 or
partial-word-1.

o A debugging indicator shall be treated as if it did not appear in the
line.

o Comments or blank lines occurring in source text and in pseudo-
text-1 are ignored.

a. If no match occurs, the comparison is repeated with each next successive
occurrence of pseudo-text-1, until either a match is found or there is no next
successive occurrence of pseudo-text-1.

b. When all occurrences of pseudo-text-1 have been compared and no match
has occurred, the next successive source program text-word is then
considered as the leftmost source program text-word, and the comparison
cycle starts again with the first occurrence of pseudo-text-1.

c. When a match occurs between pseudo-text-1 and the source text, the
corresponding pseudo-text-2 replaces the matched text in the source text.
The source text-word immediately following the rightmost text-word that
participated in the match is then considered as the leftmost source text-word.
The comparison cycle starts again with the first occurrence of pseudo-text-1.

d. The comparison operation continues until the rightmost text-word in the
source text that is within the scope of the REPLACE statement has either
participated in a match or been considered as a leftmost source text-word
and participated in a complete comparison cycle.

6. The text produced as a result of the processing of a REPLACE statement shalll
contain neither a COPY statement nor a REPLACE statement.

Elastic COBOL Language Reference Manual 24



10.

11.

12.

13.

14.

The source text that results from the processing of a REPLACE statement shall
be in logical free-form reference format. Text-words inserted into the source text
as a result of processing a REPLACE statement are placed in accordance with
the rules of free-form reference format. When inserting text-words of pseudo-
text-2 into the source text, additional spaces may be introduced only between
text-words where there already exists a space or a space is assumed.

NOTE - A space is assumed at the end of a source line.

Comments or blank lines in pseudo-text-2 are placed into the source text
unchanged whenever pseudo-text-2 is placed into the source text as a result of
text replacement. A comment or a blank line in source text shall not be placed
into the resultant source text if that comment or blank line appears within the
sequence of text-words that match pseudo-text-1.

If a REPLACE statement is specified on a debugging line, the source text that is
the result of processing the REPLACE statement shall be on a debugging line.

If any literal within pseudo-text-2 is of a length too great to be accommodated on
a single line without continuation to another line in the resultant source text and
the literal is not being placed on a debugging line, additional continuation lines
are introduced which contain the remainder of the literal. If replacement requires
the continued literal to be continued on a debugging line, the program is in error.

The effect of a format 2 REPLACE statement is to cancel all format 1 REPLACE
statements currently in effect.

LEADING ensures that the REPLACING from text must be preceded by white
space.

TRAILING ensures that the REPLACING from text must be followed by white
space.

INDEPENDENT that the REPLACING from text must be preceded and followed
by white space.

Compiler directives

A compiler directive specifies options or constants for use by the compiler.

General format

$command [parameters]

Syntax rules

1.

A compiler directive shall be specified on one line, except for the IF directives for
which specific rules are specified.

A compiler directive shall have its $ in the indicator column.

A compiler-directive word is reserved within the context of the compiler directive
in which it is specified and may be used elsewhere as any type of COBOL word.

A compiler directive may be specified anywhere in a compilation-group except
a. as restricted by the rules for the specific compiler directive,

b. within a source text manipulation statement,

Elastic COBOL Language Reference Manual 25



c. between the lines of a continued character string,

5. Compiler directive lines may be specified within library text.
General rules

1. Acompiler directive shall be treated as a single blank line during the matching
operation of a COPY or REPLACE statement. A directive will not match any
pseudo-text or partial-word and therefore will not be affected by the replacing
action.

2. Acompiler directive shall be processed before, during, and after the processing
of COPY and REPLACE statements as indicated in the specific rules for each
directive.

Conditional compilation

The use of certain compiler directives provides a means of including or omitting
selected lines of source code. This is called conditional compilation. The compiler
directives that are used for conditional compilation are 78 level constants and the IF
directive. The 78 level constants are used to define constants that are referenced in
the IF directive in order to select lines of code that are to be compiled or are to be
omitted during compilation.

Constant conditional expression

A constant conditional expression is a conditional expression in which all the
operands are literals or arithmetic expressions containing only literal terms. A
special form of condition known as a defined condition may also be used as part of a
constant conditional expression.

Syntax rules

A constant conditional expression shall be one of the following:

1. Asimple relation condition in which both sides are either literals or arithmetic
expressions containing only literal terms;

A defined condition;

A complex condition formed by combining the above two forms of simple
conditions into complex conditions as described in 8.8.4.2, Complex conditions.
Abbreviated combined relation conditions are not allowed.

General rules

Any arithmetic expression specified in a constant conditional expression is
evaluated following the normal precedence rules. After each operation the result is

Elastic COBOL Language Reference Manual 26



truncated to the integer part of the value. The resultant value is considered to be an
integer.

Defined condition

General format

Format 1:
Identifier-name-1 [NOT] DEFINED

Format 2:
Constant-name-1 [NOT] {< | > | =} literal-1

General rules
Format 1:
1. Adefined condition using the DEFINED syntax evaluates TRUE if identifier-
name-1 has previously been defined.

2. A defined condition using the NOT DEFINED syntax evaluates TRUE if identifier-
name-1 has not previously been defined.

Format 2:
1. Constant-name-1 must have been previously defined as a 78-level constant.
The type is integer is given an integer value; the type is alphanumeric otherwise.

2. Constant-name-1 is compared using integer or alphanumeric comparison to
literal-1. The expression evaluates as true depending on the comparison
between constant-name-1's contents and literal-1 using the operator <, >, =,
NOT <, NOT >, or NOT =.

IF directive

The IF directive provides for 1 or 2-way conditional compilation.

General format

$IF constant-conditional-expression-1
source-lines-1

[$ELSE
source-lines-2

]
$ENDIF

Syntax rules

1. Source-lines-1 and source-lines-2 shall be specified on a new line preceded only
by zero, one or more space characters. The $ shall be in the indicator column
for each line.

Elastic COBOL Language Reference Manual 27



2. Source-lines-1 and source-lines-2 may be any kind of source lines, including
directives

General rules

1. The IF directive is processed during the processing of COPY and REPLACE
statements.

2. If constant-conditional-expression-1 evaluates to TRUE, then source-lines-1 are
compiled as part of the COBOL source program, and source-lines-2 are ignored.

3. If constant-conditional-expression-1 evaluates to FALSE, the source-lines-1 are
ignored and source-lines-2, if specified, are compiled as part of the COBOL
source program.

Message Directives

The message directives give the user feedback during compilation. This is most
useful for conditional compilation.

General format

Format 1:
$DISPLAY text

Format 2:
$WARNING text

Format 3:
$ERROR text

Format 4:
$INFO text

General rules

1. The $ must be in the indicator column immediately followed by the statement.
2. The text can be any text to display to the user.

Format 1:

The text is displayed to the user during compilation with no further result.
Format 2:

A warning message formed from text is displayed to the user during compilation.
Format 3:

An error message formed from text is displayed to the user during compilation.
Format 4:

An info message formed from text is displayed to the user during compilation.

Elastic COBOL Language Reference Manual 28



Set Directives

The SET directive is used to set various compiler options from within the source
code.

General format

Format 1:
$SET SOURCEFORMAT“FREE”

$SET SOURCEFORMAT”FIXED”

$SET SOURCEFORMAT”VARIABLE”
Format 2:

$SET OPTIONAL-FILE

$SET NOOPTIONAL-FILE
Format 3:

$SET STDERR

$SET NOSTDERR

Format 4:
$SET DEFAULTBYTE “integer-1”

Format 5:
$SET ANIM
$SET NOANIM
Format 6:
$SET APOST
$SET QUOTE

Format 7:
$SET BOUND

Format 8:
$DATATYPE old-type=new-type
where new-type or old-type is:
COMPUTATIONAL-1-REV
COMPUTATIONAL-2-REV
COMPUTATIONAL-1-MVS
COMPUTATIONAL-2-MVS
COMPUTATIONAL-5-REV
COMPUTATIONAL-X-REV
PACKED-DECIMAL-I
PACKED-DECIMAL-A
COMPUTATIONAL-1
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPUTATIONAL-4
COMPUTATIONAL-5
COMPUTATIONAL-6

Elastic COBOL Language Reference Manual 29



COMPUTATIONAL-X
COMPUTATIONAL-N
COMPUTATIONAL-S
COMPUTATIONAL-D
PACKED-DECIMAL
UNSIGNED-SHORT
COMPUTATIONAL
UNSIGNED-LONG
UNSIGNED-INT
SIGNED-SHORT
SIGNED-LONG
SIGNED-INT
COMP-1-REV
COMP-2-REV
COMP-1-MVS
COMP-2-MVS
BINARY-REV
COMP-5-REV
COMP-X-REV
BINARY

DOUBLE

COMP-1

COMP-2

COMP-3

COMP-4

COMP-5

COMP-6

COMP-S

COMP-D

COMP-X

COMP-N

FLOAT

COMP

Format 9:
$XFD

Format 10:
$FLEXUS or SMICROFOCUS

Format 11:
$ACUGFX or $SELASTIC COBOLGFX

Format 12:
$ACUCOBOL

Elastic COBOL Language Reference Manual

30



Format 13:
$TRUNC(BIN)

Format 14:
$COMMENT text

Format 15:
$COPYRIGHT text

Format 16:
$PAGE text

Format 17:
$TITLE text

Format 18:
$VERSION text

Format 19:
SINCLUDE copy-text

Format 20:
$SET KEYCOMPRESS value
$SET NOKEYCOMPRESS

Format 21:
$SET IDXFORMAT value

Format 22:

$SET DATACOMPRESS value

$SET NODATACOMPRESS
Format 23:

$SET STICKY-PERFORM

$SET NOSTICKY-PERFORM
Format 24:

$SET ALTER

$SET NOALTER

General rules

The $ must be in the indicator column.

Format 1:

1. The SOURCE FORMAT directive indicates that the source text or library text
following the directive and continuing through a subsequent SOURCE FORMAT
directive shall be treated as fixed form if FIXED is specified, or as free form if
FREE is specified, or variable form if VARIABLE is specified. (See 6.1, Fixed-
form reference format, and 6.2, Free-form reference format.)

The default reference format of a compilation-group is fixed form.

The default reference format of library text is the reference format that was in
effect for the terminating period of the COPY statement that resulted in
processing of this library text.

Elastic COBOL Language Reference Manual 31



4. If a SOURCEFORMAT directive is specified in library text, the specified format
shall be in effect until another SOURCEFORMAT directive is encountered or the
end of the library text is reached. When the processing of that library text is
completed, the reference format shall revert to the format in effect for the
terminating period of the COPY statement that resulted in processing of that
library text.

Format 2:

1. If OPTIONAL-FILE is specified, all file assignments from that point onwards are
treated as if OPTIONAL were specified.

2. If NOOPTIONAL-FILE is specified, all file assignment from that point onwards is
treated in standard fashion, using OPTIONAL only if specified.

Format 3:

1. STDERR sets the compiler error output to be standard error.

2. NOSTDERR sets the compiler error output to be standard output.

Format 4:

DEFAULTBYTE sets the default byte with which to fill memory. Integer-1 is the
ASCII value (0-255) to use. The defaultis 0. The most common alternative is 32
(space). To ensure that this directive takes effect, use it before the identification
division, or use the command line compiler option.

Format 5:

ANIM enables debug mode, NOANIM disables debug mode.

Format 6:

APOST sets the QUOTES figurative constant to be the apostrophe (). QUOTE sets
the QUOTES figurative constant to be the double quotation marks (*).

Format 7:

BOUND tells Elastic COBOL to do bounds checking on table accesses; this is the
default and BOUND is treated as commentary.

Format 8:

In all text compiled after the $DATATYPE directive, all references to usage old-type
will be automatically replaced by references to new-type. This allows effective
usage of datatypes for compatibility with other COBOL implementations. Several
DATATYPE directives are implied by the data compatibility compiler options.
Format 9:

$XFD is ignored as commentary.
Format 10:
Implies the compiler option -Dcm for Micro Focus compatibility.

Format 11:

Override automatic detection of desired graphics to be compatible with AcuCOBOL
or original Elastic COBOL graphical syntax. Generally allow automatic detection to
handle the keyword selections automatically.

Format 12:
Enable all AcuCOBOL compatibility, implying the -Dca compiler option.

Elastic COBOL Language Reference Manual 32



Format 13:

Implies compiler option -Db:trunc, allowing BINARY usage items to be truncated at
the natural binary division according to the number of bytes used rather than the
picture.

Format 14:

Embed comment 'text' in generated source and listing file if present.

Format 15:
Embed copyright 'text' in generated source and listing file if present.

Format 16:
Embed page split marked 'text' in generated source and listing file if present.

Format 17:
Embed title marked 'text' in generated source and listing file if present.

Format 18:
Embed version marked 'text' in generated source and listing file if present.

Format 19:
Include the given text file in the source as if by COPY.

Format 20:

Set the keycompression value or disable keycompression. This value is made
available to the indexed file runtimes, but may only be used in certain file systems.
Format 21:

Set the idxformat value. This value is made available to the indexed file runtimes,
but may only be used in certain file systems.

Format 22:

Set the datacompress value or disable datacompress. This value is made available
to the indexed file runtimes, but may only be used in certain file systems.

Format 23:

STICKY-PERFORM is the ANSI described manner of PERFORM, but not the
manner of PERFORM that most programmers expect; its use is discouraged.
NOSTICKY-PERFORM allows more flexibility in the usage of PERFORM and is the
form of PERFORM most programmers expect, allowing recursive PERFORM calls.

Format 24:

Set whether the ALTER verb is allowed in the program. Certain optimizations may
be made if there is a guarantee that no ALTER will be done.

Elastic COBOL Language Reference Manual 33



7.Language fundamentals

Character sets

The basic unit of the COBOL language specification is the character. COBOL
syntax is described using the COBOL character set, which is a set of characters
independent of their encoding. Comments and the content of certain classes of
literals in the source program and the content of certain classes of data items are
represented in a coded character set -- the computer's character set. Additional
coded character sets, called alphabets, may be defined in a source program for
representation of data on external media.

Computer's character set

The computer's character set is used to represent comments and the content of
alphanumeric and national literals in the source program and to represent the
content of alphabetic, alphanumeric, and national data items.

The computer's character set at execution time is also referred to as the native
character set. A computer shall have a native alphanumeric character set and a
native national character set. Elastic COBOL's native alphanumeric character set is
ASCII; source code on EBCDIC machines is stored as EBCDIC. Elastic COBOL's
national character set is Unicode.

COBOL character set

The COBOL character set is used to represent COBOL words, separators, and the
content of hexadecimal literals in a COBOL source program. The COBOL character
set consists of the basic letters, basic digits, basic special characters, and extended
letters as shown in table 1, COBOL character set.

Elastic COBOL Language Reference Manual 34



COBOL character set

Description

Character

Meaning

Basic letters

AB, ..Z

upper-case letters in ISO/IEC 646

ab, ..z

lower-case letters in ISO/IEC 646

Basic digits

0,1 ..9

Digits

Basic special
character

Space

plus sign

minus sign (hyphen)

Asterisk

slant (slash, solidus)

equal sign

12 TN il B O S

dollar sign

Comma

Semicolon

period (decimal point, full stop)

quotation mark

Apostrophe

left parenthesis

right parenthesis

greater than

less than

Ampersand

oA v~ -

Colon

Underscore

Extended letters, additional characters used to form user-defined words, are
available from the Unicode set of hex 0080 through FF7F.

General rules

1. The mapping of source characters is ASCIl on ASCII machines, EBCDIC on
EBCDIC machines, and Unicode when the source code has the Unicode
direction marker at in the first two bytes of the file.

2. Within a compilation group, COBOL characters may be represented in either an
alphanumeric coded character set or a national coded character set or both.
The following rules apply:

a. Except when used in some alphanumeric literal formats and except for some
picture symbols, each lowercase COBOL basic letter is equivalent to its
corresponding uppercase COBOL basic letter, if any.

b. Each basic letter, basic digit, and basic special character represented in the
alphanumeric character set is equivalent to its corresponding basic letter,
basic digit, and basic special character represented in the national character
set, respectively.

3. Each Unicode national character possesses lowercase-uppercase equivalence
by converting internally to uppercase where suitable in the represented national

language.

This is active for the following Unicode regions:

a. Latin

Elastic COBOL Language Reference Manual

35



Latin-1 Supplement
Latin Extended-A
Latin Extended-B
Greek

Coptic Greek

~ 0o oo o

Cyrillic

= Q@

Armenian

i. Latin Extended Additional

j- Greek Extended

This may be disabled by use of the —nouniupper compiler switch.

4. Graphical representation of the characters is the responsibility of a combination
of the Java implementation and operating system. Different graphical
representations may be available for displaying upon SYSOUT rather than
CONSOLE. Java 2 is generally more capable of displaying and accepting
Unicode characters than JDK 1.1.

Alphabets

Alphabets in COBOL are named specifications of coded character sets and collating
sequences. The SPECIAL-NAMES paragraph provides the means for naming
alphabets and for specifying user-defined coded character sets and collating
sequences. A coded character set or collating sequence can be used by specifying
its alphabet-name in COBOL statements or entries that reference a coded character
set or collating sequence as an operand.

Lexical elements

The individual characters of the language are concatenated to form character-
strings and separators. A separator may be concatenated with another separator or
with a character-string. A character-string may only be concatenated with a
separator. The concatenation of character-strings and separators forms the text of a
source program.

Character-strings

A character-string is a character or a sequence of contiguous characters that forms
a COBOL word, a literal, or a PICTURE character-string. A character-string is
delimited by separators.

COBOL words

A COBOL word is a character-string of not more than 31 characters that form a
compiler-directive word, a context-sensitive word, an intrinsic-function-name, a

Elastic COBOL Language Reference Manual 36



reserved word, a system-name, or a user-defined word. Each character of a
COBOL word that is not a special character word shall be selected from the set of
basic letters, basic digits, extended letters, and the basic special characters hyphen
and underscore. The hyphen or underscore shall not appear as the first or last
character in such words.

Within a source program the following apply:

1. For all COBOL words excluding the words INTEGER, LENGTH, RANDOM, and
SUM:

a. Reserved words form disjoint sets with context-sensitive words, intrinsic-
function-names, system-names, and user-defined words.

b. Compiler-directive words, context-sensitive words, intrinsic-function-names,
system-names, and user-defined words form intersecting sets. The same
COBOL word may be used as a compiler-directive word, as a context-
sensitive word, as an intrinsic-function-name, as a system-name, and as a
user-defined word. The classification of a specific occurrence of such
COBOL words is determined by the context of the statement, clause, or
phrase in which it occurs.

2. Forthe COBOL words INTEGER, LENGTH, RANDOM, and SUM:

a. The reserved words INTEGER, LENGTH, RANDOM, and SUM form an
identical set with the intrinsic-function-names INTEGER, LENGTH,
RANDOM, and SUM. The same COBOL word LENGTH, RANDOM, or SUM
may be used as an intrinsic-function-name and as a reserved word. The
classification of a specific occurrence of such COBOL words is determined
by the context in which it occurs.

b. The COBOL words INTEGER, LENGTH, RANDOM, and SUM form disjoint
sets with user-defined words and system-names. The COBOL words
INTEGER, LENGTH, RANDOM, and SUM may not be used as a system-
name or as a user-defined word regardless of context.

User-defined words

A user-defined word is a COBOL word that shall be supplied by the user to satisfy
the format of a clause or statement.

Types of user-defined words

alphabet-name paragraph-name
cd-name (obsolete element) parameter-name
class-name (for object orientation) program-name
class-name (for truth value program-prototype-name
proposition)

condition-name property-name
constant-name record-key-name
data-name record-name
file-name report-name
function-prototype-name screen-name
index-name section-name
interface-name symbolic-character
level-number type-name
method-name user-function-name
mnemonic-name

Elastic COBOL Language Reference Manual 37



Within a given source element the user-defined words are grouped into the following

disjoint sets:
o alphabet-names
o class-names or object-class-names (for object orientation)
o class-names or value-class-names (for truth value proposition)
o condition-names, data-names, property-names, record-key-names, and
record-names
o constant-names
o file-names
o index-names
o interface-names
o mnemonic-names
o paragraph-names
o parameter-names
J program-names
J program-prototype-names
o screen-names
o section-names
o symbolic-characters
o user-function-names

Each user-defined word, except level-number, belongs to one of these disjoint sets.
Further, all user-defined words within a given disjoint set shall be unique, except as
specified in Uniqueness of reference.

With the exception of section-names, paragraph-names, and level-numbers, each
user-defined word shall contain at least one basic letter or extended letter. Level-
numbers need not be unique; a given specification of a level-number may be
identical to any other level-number.

The following user-defined words shall be externalized to the operating environment:

1. program-names of separately-compiled programs, class-names, function-
prototype-names, interface-names, method-names, program-prototype-names,
and user-function-names

2. data-names, file-names, and record-names of items described with the
EXTERNAL attribute.

When specified as a literal, externalized names may contain any characters other
than the null character.

The AS phrase specifies a literal to be used as the name that is externalized to the
operating environment

Elastic COBOL Language Reference Manual 38



When two or more source elements identify something with the same externalized
name, they refer to the same instance. No hame that is externalized to the
operating environment can identify more than one kind of instance.

Alphabet-name

An alphabet-name identifies a specific collating set and character sequence. This
relationship is established in the SPECIAL-NAMES paragraph.

Class-name (for object orientation)

A class-name identifies a class, the entity that defines common behavior and
implementation for zero, one, or more objects. This relationship is established in the
REPOSITORY paragraph or in the CLASS-ID paragraph.

Class-name (for truth value proposition)

A class-name identifies a proposition, for which a truth value can be determined, that
the content of a data item consists exclusively of those characters listed in the
definition of the class-name. This relationship is established in the SPECIAL-
NAMES paragraph.

Condition-name

A condition-name identifies a value, set of values, or range of values defined in the
data division, or identifies an on or off status defined in the SPECIAL-NAMES
paragraph.

Constant-name
A constant-name identifies a constant declared as a level 78 data item.

Data-name

A data-name identifies a data item described in a data description entry or a record
described in a record description entry.

File-name

A file-name identifies a file connector described in a file description entry or a sort-
merge file description entry within the file section of the data division.

Index-name
An index-name identifies an index associated with a specific table.

Interface-name

An interface-name identifies an interface, a grouping of method prototypes. This
relationship is established in the REPOSITORY paragraph or in the CLASS-ID
paragraph.

Level-number

A level-number, expressed as a one-digit or two-digit number, indicates the
hierarchical position of a data item or the special properties of a data description
entry.

Elastic COBOL Language Reference Manual 39



Mnemonic-name

A mnemonic-name identifies an implementor-named device-name, feature-name, or
switch-name. This relationship is established in the SPECIAL-NAMES paragraph.

Mnemonic devices recognized

Mnemonic Name

Synonyms

Function

CONSOLE (default)

SYSOUT, SYSIN

SYSERR
SERVLETOUT, SERVLETIN

PRINTER

co1

Cco2

Co3

Cco4

CO05

Co6

co7

co8

Cco9

C10

Cc1a

C12

S01

S02

S03

S04

S05

CSP
ARGUMENT-NUMBER
ARGUMENT-VALUE
ENVIRONMENT-NAME
ENVIRONMENT-VALUE

CRT

SYSIPT, SYSLIST, SYSLST,
SYSOUT-FLUSH, SYSPCH,
SYSPUNCH,

SERVLET-OUT, SERVLET-IN,
SESSION-OUT, SESSION-
OuT,

SESSIONOUT, SESSIONIN

Graphical CONSOLE or
Text Terminal CONSOLE
Standard output/input stream.

Standard error stream.
Servlet or CGI output / input.

Printer virtual device.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
Not implemented.
ACCEPT to read,
DISPLAY to set, ACCEPT to read
DISPLAY to set,
DISPLAY to set, ACCEPT to read

Paragraph-name

A paragraph-name identifies a paragraph in the procedure division. Paragraph-
names are equivalent if they are composed of the same sequence of the same
number of COBOL characters.

Parameter-name

A parameter-name identifies a formal parameter of a parameterized class or a

parameterized interface.

Program-name

A program-name identifies a program. For a COBOL program, program-name is the
name specified in the PROGRAM-ID paragraph of the program's identification
division. This program-name is externalized as a lowercase name with hyphens
turned to underscores if specified directly; if specified as a literal, the name is
externalized directly as given. The name should consist of only upper- and lower-

Elastic COBOL Language Reference Manual

40




case letters, digits, and underscores. Other names may work in certain Java
implementations, but their use should be avoided for portability. CALL'’s to upper-
case names will map first to the name given, but will also find programs with lower-
case, converted names.

Program-prototype-name
A program-prototype-name identifies a program prototype.

Property-name

A property-name identifies a means of getting information out of and passing
information back into an object.

Record-key-name
A record-key-name identifies a key associated with an indexed file.

Record-name

A record-name identifies a record described in a record description entry. A record-
name may be specified where a data-name is allowed unless specific rules for the
format disallow it.

Screen-name
A screen-name identifies a screen description entry in the screen section.

Section-name
A section-name identifies a section in the procedure division.

Symbolic-character

A symbolic-character is a user-defined figurative constant that represents a value
specified in the SPECIAL-NAMES paragraph.

User-function-name
A user-function-name identifies a function.

System-names

A system-name is used to communicate with the operating environment. System
names are formed in the same manner as all identifiers.

The types of system-names are:

o call-convention-name
o code-name

o computer-name

o device-name

J feature-name

o library-name

. locale-name

Elastic COBOL Language Reference Manual 41



o report-attribute-name
o Switch-name
. text-name

Within a given implementation these types of system-names form disjoint sets; a
given system-name may belong to one and only one of them.

Call-convention-name

A call-convention-name identifies attributes of the linkage mechanism for a function,
method, or program, such as the mechanism for passing arguments, stack
management, and name case sensitivity.

Code-name
A code-name identifies a character code set and a collating sequence.

Computer-name

A computer-name may identify the computer upon which the program is to be
compiled or run.

Device-name
A device-name identifies an input-output device.

Feature-name
A feature-name identifies a feature of an input-output device.

Library-name
A library-name identifies a COPY library.

Switch-name
A switch-name is identified by:
SWITCH-1 ... SWITCH-26
SYSTEM-SWITCH-1 ... SYSTEM-SWITCH-26
SWITCH {integer-1-to-26}
SWITCH {nonnumeric-single-character-literal-A-to-Z}

Text-name
A text-name identifies a library text.

Reserved words

A reserved word is one of a specified list of words that is be used in COBOL source
program, but that shall not appear in the program as a user-defined word or a
system-name. Reserved words shall only be used as specified in the general
formats. (See 8.9, Reserved words.)

Reserved words satisfy the following conditions:

1. Reserved words do not begin with the characters '0', ... , '9', 'X', 'Y',or 'Z'
except for the reserved words ZERO, ZEROES, and ZEROS.

Elastic COBOL Language Reference Manual 42



Additional reserved words are ZERO-FILL, YEAR, YYYYMMDD, and
YYYYDDD.

Reserved words do not contain only one alphabetic character.

3. Reserved words do not start with 1 or 2 characters followed by '-' except for the
reserved words I-O, I-O-CONTROL, and reserved words that begin with 'B-'.

4. Reserved words do not contain two or more contiguous hyphens.
There are three types of reserved words:

o required words
o optional words
o special purpose words

5. Reserved words, with the exception of LC_CURRENCY and locale-category
names, do not contain underscores.
Required words

A required word is a word whose presence is required when the format in which the
word appears is used in a source program.

Required words are of two types:
1. Key words. Within each format, such words are uppercase and underlined.

2. Special character words. These are the arithmetic operators, the concatenation
operator, the invocation operator, and the relation characters.

Optional words

Within each format, uppercase words that are not underlined are called optional

words and may be specified at the user's option with no effect on the semantics of
the format.

Special purpose words
The types of special purpose words are:

o figurative constants

o predefined address

o predefined object identifiers
o special registers

Figurative constants

Certain reserved words are used to name and reference specific constant values.
These reserved words are specified in figurative constant values.

Figurative constants may also be defined in the FIGURATIVE CONSTANTS
paragraph in the CONFIGURATION SECTION.

Predefined address
The reserved word NULL is used as a predefined address.

Elastic COBOL Language Reference Manual 43



Predefined object identifiers
Reserved words used as predefined object identifiers are:

o NULL
o SELF
o SUPER

Further specification of predefined object identifiers is given in Identifiers.

Special registers
The following reserved words are used to hame and reference special registers:

o CURRENT-DATE

o CURRENT-TIME

o FAC

o LENGTH

o LINAGE-COUNTER
o LINE-COUNTER

o PAGE-COUNTER

o RECORD POSITION
o SIZE

o TIME-OF-DAY
o WHEN-COMPILED

Further specification of special registers is given in Special registers.

Context-sensitive words

A context-sensitive word is a COBOL word that is reserved only in the general
formats in which it is specified. The same word may also be used as an intrinsic-
function-name, a user-defined word, or a system-name.

Intrinsic-function-names

An intrinsic-function-name is a COBOL word that identifies a specific intrinsic
function (see 15.5, Summary of functions). With the exception of the words
INTEGER, LENGTH, RANDOM, and SUM, a word that is an intrinsic-function-name
may appear in a different context in a program as a context-sensitive word, a
system-name, or a user-defined word.

Literals

Aliteral is a character string representing a data value derived from the ordered set
of characters of which the literal is composed or is defined by a reserved word that
references a figurative constant. Each literal possesses a class and category:
alphanumeric, national, or numeric.

Elastic COBOL Language Reference Manual 44



The paired quotation symbols specified in the opening and closing delimiters of
alphanumeric literals may be either apostrophes or quotation marks. Both forms
may be used within a single source unit.

Hexadecimal digits are used to specify the value of the literal in the hexadecimal-
alphanumeric and hexadecimal-G formats of literals. The hexadecimal digits are the
basic digits '0' through '9' and the basic letters 'A' through 'F'. When used as
hexadecimal digits, the lowercase letters 'a' through 'f' are equivalent to the
corresponding uppercase letters 'A' through 'F'.

Alphanumeric literals
Alphanumeric literals are of the class and category alphanumeric.

General format

Format 1 (alphanumeric):
{“ {character-1} ...” | * {character-1} ... ‘ }

Format 2 (mixed-text-alphanumeric):
{T” {character-1} ... “ | T’ {character-1} ... ‘ }

Format 3 (hexadecimal-alphanumeric):
{ X" {hex-character-sequence-1} ...” | X’ {hex-character-sequence-1} ..." }

Format 4 (octal-alphanumeric)
{ O” {octal-character-sequence-1} ...” | O’ {octal-character-sequence-1} ..." }

Format 5 (octal-alphanumeric-2 (HP-style))
{ %{octal-character-sequence-1} ... }

Format 6 (binary-alphanumeric)

{1” {binary-character-sequence-1} ...” | I’ {binary-character-sequence-1} ...’ }
Format 7 (decimal-alphanumeric)
{ D” {decimal-character-sequence-1} ...” | D’ {decimal-character-sequence-1} ...’ }
Syntax rules
ALL FORMATS

The length of an alphanumeric literal, excluding the separators that delimit the literal,
shall be greater than zero and less than or equal to 160 alphanumeric character
positions.

This limit is raised to 2047.
Elastic COBOL currently cannot embed null characters (0) in alphanumeric literals.

FORMATS 1 AND 2
1. Character-1 may be any character in the computer's character set.

2. If character-1 is to represent the quotation symbol used in the opening delimiter,
two contiguous matching quotation symbol characters shall be specified to
represent a single occurrence of that character.

3. The two contiguous quotation symbols used to represent a single quotation
symbol character shall be in the same coded character set representation.

4. If character-1 is a COBOL basic letter, the lowercase and uppercase letters are
distinct.

Elastic COBOL Language Reference Manual 45



FORMAT 1
Do not include national characters in a format 1 literal.

FORMAT 2

National characters in external media format shall be permitted in a format 2
alphanumeric literal.

FORMAT 3

1. Hex-character-sequence-1 shall be composed of hexadecimal digits.

2. Each hex-character-sequence-1 shall consist of two (2) characters.

3. The value of each hex-character-sequence-1, as specified in general rule 6,
shall be less than 256.

FORMAT 4

Octal-character-sequence-1 is a three (3) character sequence of octal digits from

000-377.

FORMAT 5

Octal-character-sequence-1 is a three (3) character sequence of octal digits from

000-377. This format is for HP compatibility only; do not use in new code.

FORMAT 6

Binary-character-sequence-1 is an eight (8) character sequence of binary digits 0 or

1.

FORMAT 7

Decimal-character-sequence-1 is a three (3) character sequence of decimal digits
from 000-255.

General rules
ALL FORMATS

1. The separators that delimit the alphanumeric literal shall not be included in the
value of the alphanumeric literal.

Alphanumeric literals are of the class and category alphanumeric.

The value of an alphanumeric literal at run time shall be the value represented
by character-1.

4. When national characters in external media format appear in the value of the
literal, control functions, if any, essential to the representation of the external
media format of character-1 shall be included in the value of the literal.

5. When national characters in external media format appear in the value of the
literal, the value of the literal shall be treated at execution time as a string of
alphanumeric characters except for purposes of explicit conversion between
classes as defined for the DISPLAY-OF and NATIONAL-OF functions.

FORMAT 3

The value of the literal at run time is the series of native characters specified by the
series of hex-character-sequence-1. For each hex-character-sequence-1, the value
resulting from the following expression is the ordinal position of the character in the
value of that native coded character set:

Elastic COBOL Language Reference Manual 46



# digits
1+ z digit-value = (16 ** {position-from-right — 1} )
1

o where digit-value for a numeric digit is the value that digit has when
specified as a numeric literal and digit-value for 'A' is 10, 'B'is 11, 'C'is 12, 'D'is
13, 'E'is 14, and 'F'is 15.

o and where position-from-right is such that the rightmost digit is 1, the digit
to the left of it is 2, etc.

Numeric literals

Numeric literals are of the class and category numeric.

Fixed-point numeric literals

A fixed-point numeric literal is a character-string whose characters are selected from
the digits '0' through '9', the plus sign, the minus sign, and the decimal point.
Elastic COBOL allows for fixed-point numeric literals of 1 through 18 digits in length.
The rules for the formation and value of fixed-point numeric literals are as follows:

1. Aliteral shall contain at least one digit.

2. Aliteral shall not contain more than one sign character. If a sign is used, it shall
appear as the leftmost character of the literal. If the literal is unsigned, the literal
iS nonnegative.

3. Aliteral shall not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere within the
literal except as the rightmost character. If the literal contains no decimal point,
the literal is an integer.

4. The value of a fixed-point numeric literal is the algebraic quantity represented by
the characters in the fixed-point numeric literal. The size of a fixed-point numeric
literal in standard data format characters is equal to the number of digits in the
string of characters as specified by the user.

Floating-point numeric literals
The rules for the formation and value of floating-point numeric literals are:

1. Afloating-point numeric literal is formed from two fixed-point numeric literals
separated by the letter 'E' without any spaces.

2. The literal to the left of the 'E' represents the significant. It may be signed and
shall include a decimal point. The significant shall be 1 through 31 digits in
length. If the significant is signed, the floating-point numeric literal is considered
to be signed. If the significant is unsigned, the floating-point numeric literal is
considered to be positive.

3. The literal to the right of the 'E' represents the exponent. It may be signed and
shall have a maximum of three digits and no decimal point. The maximum
permitted value of the exponent is implementor-defined.

4. If all the digits in the significant are zero, then all the digits of the exponent shall
also be zero and neither significant nor exponent shall have a negative sign.

Elastic COBOL Language Reference Manual 47



5. The value of a floating-point numeric literal is the algebraic product of the value
of its significant and the quantity derived by raising ten to the power of the
exponent.

General format
Format 1 (decimal)
{digit} ...

Format 2 (hexadecimal-numeric):
{ H” {hex-character-sequence-1} ...” | H' {hex-character-sequence-1}...’

| H#{hex-character-sequence-1} | X#{hex-character-sequence-1}}

Format 3 (octal-numeric)
{ Q” {octal-character-sequence-1} ...” | Q’ {octal-character-sequence-1} ...’

|Q#{octal-charater-sequence-1} | O#{octal-character-sequence-1}}

Format 4 (binary-numeric)
{ B” {binary-character-sequence-1} ...” | B’ {binary-character-sequence-1} ...’

|B#{binary-character-sequence-1} | I#{binary-character-sequence-1}}

Format 5 (decimal-numeric)
{ C” {decimal-character-sequence-1} ...” | C’ {decimal-character-sequence-1} ...’

|C#{decimal-character-sequence-1} | D#{decimal-character-sequence-1}}

General rules
ALL FORMATS
The result is a numeric literal value.

FORMAT 1

This is the standard numeric format.

FORMAT 2

1. Hex-character-sequence-1 shall be composed of hexadecimal digits.
2. Each hex-character-sequence-1 shall consist of two (2) characters.

3. The value of each hex-character-sequence-1, as specified in general rule 6,
shall be less than 256.

4. AcuCOBOL compatibility H is treated as alphanumeric rather than numeric; if the
second character is not a '#'

FORMAT 3

Octal-character-sequence-1 is a three (3) character sequence of octal digits from
000-377.

FORMAT 4

Binary-character-sequence-1 is an eight (8) character sequence of binary digits 0 or
1.

FORMAT 5

Decimal-character-sequence-1 is a three (3) character sequence of decimal digits
from 000-255.

Elastic COBOL Language Reference Manual 48



National literals

National literals are of the class and category national.

General format

Format 1 (national)
{ N’{character-1} ...” | N’{character-1}..." }

Format 2 (hexadecimal-national (IBM compatibility))
{ G”{hex-character-sequence-1}...” | G’{hex-character-sequence-1}..." }

Syntax rules
ALL FORMATS

If character-1 is to represent the quotation symbol used in the opening delimiter, two
contiguous matching quotation symbol characters shall be specified to represent a
single occurrence of that character.

FORMAT 1
1. Character-1 shall be any character in the computer's national character set.

2. The length of a national literal, excluding the separators that delimit the literal,
shall be greater than zero and less than or equal to 160 national character
positions.

FORMAT 2
1. Hex-character-sequence-1 shall be composed of hexadecimal digits.
2. Each hex-character-sequence-1 shall consist of 4 hexadecimal digits.

3. The value of each hex-character-sequence-1, as specified in general rule 4,
shall be less than the value that the implementor has specified as the maximum
value of the hexadecimal digits that map to a national character.

4. The < character is the literal SHIFT-OUT character.
The > character is the literal SHIFT-IN character.
This form is for IBM compatibility only; do not use this form in new code.

General rules
ALL FORMATS
1. The separators that delimit the national literal shall not be included in the value
of the national literal.
2. National literals are of the class and category national.

FORMAT 1
The value of a national literal at run time shall be the value represented by
character-1.
FORMAT 2

The value of the literal at run time is the series of national characters specified by
the series of hex-character-sequence-1. For each hex-character-sequence-1, the
value resulting from the following expression is the ordinal position of the character
in the national coded character set:

Elastic COBOL Language Reference Manual 49



o where digit-value for a numeric digit is the value that digit has when
specified as a numeric literal and digit-value for 'A'is 10, 'B'is 11, 'C'is 12, 'D'is
13, 'E'is 14, and 'F' is 15, and where position-from-right is such that the rightmost
digit is 1, the digit to the left of it is 2, etc.

Figurative constant values

Figurative constant values are generated by the compiler and referenced through
the use of the reserved words given below. When used as figurative constants,
these words shall not be bounded by the opening and closing delimiters of literals.
The singular and plural forms of figurative constants are equivalent and may be
used interchangeably.

The figurative constant value and the reserved words used to reference them are as
follows:

1. [ALL] ZERO, [ALL] ZERQOS, [ALL] ZEROES: Represents the numeric value '0',,
or one or more of the character '0' from the computer's character set,
depending on context.

2. [ALL] SPACE, [ALL] SPACES: Represents one or more of the character space
from the computer's character set.

3. [ALL] HIGH-VALUE, [ALL] HIGH-VALUES: Except in the SPECIAL-NAMES
paragraph, represents one or more of the character that has the highest ordinal
position in the program collating sequence.

4. [ALL] LOW-VALUE, [ALL] LOW-VALUES: Exceptin the SPECIAL-NAMES
paragraph, represents one or more of the character that has the lowest ordinal
position in the program collating sequence.

5. [ALL] QUOTE, [ALL] QUOTES: Represents one or more of the character "™ in
the computer's character set. The word QUOTE or QUOTES may not be used in
place of a quotation symbol in a source program to bind a literal. With the
APOST directive, the character represented is (').

6. ALL literal: Represents all or part of the string generated by successive
concatenations of the characters comprising the literal. The literal shall be an
alphanumeric, Boolean, or national literal, any of which may be a concatenation
expression. The literal shall not be a figurative constant.

7. [ALL] symbolic-character: Represents one or more of the character specified as
the value of this symbolic-character in the FIGURATIVE CONSTANTS clause of
the CONFIGURATION SECTION.

When a figurative constant is used in a context requiring national characters, the
figurative constant shall represent a national character value. Otherwise, when a
figurative constant represents a character value, the figurative constant represents
an alphanumeric character value. In both cases, the character value representation
of the figurative constant ZERO (ZEROS, ZEROES), SPACE (SPACES), and
QUOTE (QUOTES) shall be the value of the character '0', space, and ",
respectively, in the computer's character set.

When a figurative constant represents a string of one or more characters, the length
of the string is determined from context by applying the following rules in order:

Elastic COBOL Language Reference Manual 50



1. When afigurative constant is specified in a VALUE clause, or when a figurative
constant is associated with another data item, the string of characters specified
by the figurative constant is repeated character by character on the right until the
size of the resultant string is greater than or equal to the number of character
positions in the associated data item. This resultant string is then truncated from
the right until the number of character positions remaining is equal either to 1 or
to the number of character positions in the associated data item, whichever is
greater. This is done prior to and independent of the application of any
JUSTIFIED clause that may be associated with the data item.

NOTE - A figurative constant is associated with a data item when, for example
the figurative constant is moved to or compared with that data item.

2. When a figurative constant, other than ALL literal, is not associated with a
VALUE clause or another data item, the length of the string is one character.
NOTE - For example, when the figurative constant appears in a DISPLAY, STOP,
STRING, or UNSTRING statement, it is one character.

3. When a figurative constant ALL literal is not associated with a VALUE clause or
another data item, the length of the string is the length of the literal.

A figurative constant may be used whenever 'literal’ appears in a format with the
following exceptions:

1. When a figurative constant is specified in a concatenation expression, the length
of the string is one character.

2. If the literal is restricted to a numeric literal, the only figurative constant permitted
is ZERO (ZEROS, ZEROES) without the word ALL.

3. The figurative constant ALL literal, when the length of the literal is greater than
one, is not permitted to be associated with a numeric or numeric-edited item.

4. When a figurative constant other than ALL literal is used, the word ALL is
redundant and is used for readability only.

5. Afigurative constant shall not be specified where an alphanumeric literal is used
to identify a method.

Except in the SPECIAL-NAMES paragraph, when the figurative constants HIGH-
VALUE(S) or LOW-VALUE(S) are used in the source program, the actual characters
associated with each figurative constant depend upon the program collating
sequence specified. When LOW-VALUE and HIGH-VALUE are used in a context
requiring national characters, the character represented shall be from the national
program collating sequence; otherwise, the character represented shall be from the
alphanumeric program collating sequence.

Punctuation characters

Punctuation characters are characters used in the formation of separators.

Punctuation characters

Character Meaning
comma
semicolon

Elastic COBOL Language Reference Manual 51



Character Meaning

colon

period (full stop)

quotation mark

apostrophe
( left parenthesis
) right parenthesis
space
= equal sign

Separators

A separator is one, two, or three contiguous characters formed according to the
following rules:

1.

The punctuation character space is a separator. Anywhere a space is used as a
separator or as part of a separator, more than one space may be used. All
spaces immediately following the separators comma, semicolon, or period are
considered part of that separator and are not considered to be the separator
space.

Except when the comma is used in a PICTURE character-string, the punctuation
characters comma and semicolon, immediately followed by a space, are
separators that may be used anywhere the separator space is used. They may
be used to improve program readability.

The punctuation character period, when followed by a space is a separator. It
shall be used only to indicate the end of a sentence, or as shown in formats.

The punctuation characters right and left parentheses are separators. Except in
pseudo-text, parentheses may appear only in balanced pairs of left and right
parentheses delimiting subscripts, a list of function arguments, reference
modifiers, arithmetic expressions, or conditions.

The opening delimiters and closing delimiters of literals are separators. Either
an apostrophe or a quotation mark may be used as the quotation symbol
character in opening and closing delimiters.

The opening delimiters of literals are
. a quotation symbol
° the two contiguous characters N”, X', etc. used to form literals

The closing delimiters of literals are:

o a quotation mark when the opening delimiter uses a quotation
mark
. an apostrophe when the opening delimiter uses an apostrophe

The opening delimiter shall be immediately preceded by a space, left
parentheses, or opening pseudo-text delimiter. The closing delimiter shall be
immediately followed by one of the separator space, comma, semicolon, period,
right parenthesis, or closing pseudo-text delimiter. Separators immediately
preceding the opening delimiter are not part of the opening delimiter. Separators
immediately following the closing delimiter are not part of the closing delimiter.

Elastic COBOL Language Reference Manual 52



6. Pseudo-text delimiters are separators. An opening pseudo-text delimiter shall
be immediately preceded by a space; a closing pseudo-text delimiter shall be
immediately followed by one of the separator space, comma, semicolon, or
period. Pseudo-text delimiters may appear only in balanced pairs delimiting
pseudo-text.

7. The punctuation character colon is a separator and is required when shown in
the general formats.

8. The separator space may optionally immediately precede all separators except:
a. As specified by reference format rules (see Reference format.)
b. The closing delimiter of a literal.
c. The opening pseudo-text delimiter, where the preceding space is required.

9. The separator space may optionally immediately follow any separator except the
opening delimiter of a literal. A space following the opening delimiter of a literal
shall be part of the literal and not a separator.

Any punctuation character appearing as part of the specification of a PICTURE
character-string or numeric literal is not considered as a punctuation character,
but rather as a symbol used in the specification of that PICTURE character-string
or numeric literal. PICTURE character-strings are delimited only by the separator
space, comma, semicolon, or period.

The rules established for the formation of separators do not apply to the content
of alphanumeric, or national literals or comments.

References

References identify elements referred to during compilation of source unit or
execution of a run unit. The reserved words and types of names specified in Lexical
elements are forms of reference. Additional forms of reference are condition-names
and identifiers.

Condition-name

A condition-name identifies a specific value, set of values, or range of values, within
a complete set of values that a data item may assume. The data item itself is called
a conditional variable.

Condition-names may be defined in the data division or in the SPECIAL-NAMES
paragraph within the environment division where a condition-name shall be
assigned to the on status or off status, or both, of the switches SWITCH-1 through
SWITCH-26.

A condition-name is used in conditions as an abbreviation for the relation condition;
this relation condition posits that the associated conditional variable is equal to one
of the set of values to which that condition-name is assigned. A condition-name is
also used in a SET statement, indicating either that a value is moved to the
associated conditional variable that makes the condition-name either 'true’ or 'false’,
depending on the format of the SET statement, or that SWITCH-1 through SWITCH-
26 is set to an 'on’ or 'off' status.

Elastic COBOL Language Reference Manual 53



General format

Format 1 (switch-status-condition-name):
condition-name-1

Format 2 (qualified-condition-name-with-subscripts):
condition-name-2 [ {IN|JOF} data-name-2] ...
[ {IN|JOF} {file-name-1}]
[ ({subscript-1} ...)]

Syntax rules

FORMAT 1

Condition-name-1 shall be associated with a switch-name in the SPECIAL-NAMES
paragraph.

FORMAT 2

If the conditional variable associated with condition-name-2 requires subscripting,
condition-name-2 shall be subscripted with the same number of subscripts required
for the conditional variable.

Identifiers

Identifier

An identifier is a sequence of character-strings and separators used to reference
data uniquely.

General format

Format 1 (function identifier):
function-identifier-1

Format 2 (qualified-data-name-with-subscripts):
data-name-1 [{IN|OF} data-name-2] ...
[ {IN|OF} {file-name-1}]
[ ({subscript-1}...) ]

Format 3 (reference-modification):
identifier-1 reference-modifier-1

Format 6 (predefined-object):
NULL
SELF
SUPER

Format 9 (predefined-address)
NULL

Format 10 (address-identifier)
data-address-identifier-1

Elastic COBOL Language Reference Manual 54



Syntax rules

ALL FORMATS

Identifier is defined recursively: whenever the format for an identifier allows another
identifier to be specified, that other identifier may be any of the formats for an
identifier, including the one being defined provided the rules for each format are
followed.

FORMAT 1
Function-identifier-1 is defined by Function Identifier.

FORMAT 2
1. The words IN and OF are equivalent.

2. If data-name-1 is not unique in the scope of names of the current source
element, then it shall be followed by a combination of qualifiers and subscripts
necessary for uniqueness of reference in accordance with Scope of names.

3. Subscripts are defined by Subscripts.

FORMAT 3
Reference-modifier-1 is defined by Reference-modifier.

FORMAT 4
Predefined-object identifiers are defined by NULL; and SELF and SUPER.

FORMAT 5
Predefined-address NULL is defined in Predefined-address.

FORMAT 6
Address-identifiers are defined by Data-address-identifier.

General rules

The order in which the various components of an identifier are applied is as follows,
with the first to be applied listed first:

1. predefined-object identifiers are considered elementary identifiers

2. OF or IN for data-name qualification, qualifies the (possibly already qualified)
data-name on the left with the cd-name, file-name, report-name or data-name on
the right

a subscript applies to the fully qualified data-name on the left
4. the object-modifier applies to the object identifier on the left

OF for object properties applies the property name on the left to the object
identifier on the right

6. reference madification applies to the identifier on the left.

Function-identifier

A function-identifier references the unique data item that results from the evaluation
of a function.

Elastic COBOL Language Reference Manual 55



General format

Syntax rules

1. Afunction-identifier shall not be specified as a receiving operand.

2. If a function may optionally have zero arguments, a left parenthesis immediately
following function-name-1 shall be the left delimiter of that function's argument
list.

NOTE - Putting such a function in parentheses separates the function from the next
item starting with a left parenthesis in the list of arguments and subscripts. For
example:

FUNCTION MAX ((FUNCTION RANDOM) (A) B)

3. Argument-1 shall be an identifier, a literal, or an arithmetic expression. Specific
rules governing the number, class, and category of argument-1 are given for
intrinsic functions in the definition of that intrinsic function in Intrinsic functions,
and for user-defined functions in Conformance for parameters and returning
items.

4. Anumeric function shall not be specified where an integer operand is required,
even though a particular reference of the numeric function might yield an integer
value.

5. An integer function other than the integer form of the ABS function shall not be
specified where an unsigned integer is required.

6. If function-prototype-name-1 is specified, the rules for conformance specified in
Conformance for parameters and returning items, shall apply.

General rules

1. Atthe time reference is made to a function, its arguments are evaluated
individually in the order specified in the list of arguments, from left to right. An
argument being evaluated may itself be a function-identifier or may be an
expression containing function-identifiers. There is no restriction preventing the
function referenced in evaluating an argument from being the same function as
that for which the argument is specified. Additional rules for intrinsic functions
are given in Intrinsic functions, for user-defined functions in General rules of the
procedure division and in Conformance for parameters and returning items.

2. Afunction is a temporary data item whose value is determined when the function
is referenced at run time.

If intrinsic-function-name-1 is specified, the temporary data item is an elementary
data item whose description and category are specified by the definition of that
intrinsic function in Intrinsic functions.

3. Evaluation of the function-identifier proceeds as follows:

a. Each argument-1 is evaluated at the beginning of the evaluation of the
function-identifier. If an exception condition exists, no function is activated
and execution proceeds as specified in general rule 6g. If an exception
condition does not exist, the values of argument-1 are made available to the
activated function at the time control is transferred to that function.

Elastic COBOL Language Reference Manual 56



b. The runtime system attempts to locate the function being activated. If
function-prototype-name-1 is specified, the rules are specified in Scope of
names and Conventions for function-prototype-names and program-
prototype-names.

Reference-modifier

Reference modification defines a unique data item by specifying an identifier, a
leftmost position, and a length.

General format

Syntax rules

1.

2.
3.

Identifier-1 shall reference a data item that is one of the following:

o an elementary item of category alphanumeric or national,
Identifier-1 shall not include a type-modifier with the type-name-1 phrase.

Leftmost-position and length shall be arithmetic expressions.

Unless otherwise specified, reference modification is allowed anywhere an
identifier referencing a data item of class alphanumeric or national is permitted.

General rules

1.

Leftmost-position shall represent a Boolean position, alphanumeric position, or
national position when identifier-1 references a Boolean, alphanumeric, or
national data item, respectively.

If the data item referenced by identifier-1 is explicitly or implicitly described as
usage DISPLAY and its category is other than alphanumeric, it shall be operated
upon for purposes of reference modification as if it were redefined as a data item
of class and category alphanumeric of the same size as the data item
referenced by identifier-1.

If the data item referenced by identifier-1 is explicitly or implicitly described as
usage NATIONAL and its category is other than national, it shall be operated
upon for purposes of reference modification as if it were redefined as a data item
of class and category national of the same size as the data item referenced by
identifier-1.

Each position of a data item referenced by identifier-1 is assigned an ordinal
number incrementing by one from the leftmost position to the rightmost position.
The leftmost position is assigned the ordinal number one. If the data description
entry for identifier-1 contains a SIGN IS SEPARATE clause, the sign position is
assigned an ordinal number within that data item.

Reference modification creates a unique data item that is a subset of the data
item referenced by identifier-1. This unique data item is defined as follows:

The unique data item is considered to be an elementary data item without the
JUSTIFIED clause. The unique data item has the same class, category, and
usage as that defined for identifier-1, except that the categories numeric,

Elastic COBOL Language Reference Manual 57



numeric-edited, and alphanumeric-edited are considered class and category
alphanumeric.

Subscripts

Subscripts are used when reference is made to an individual element within a table
of like elements.

General format

NOTE - Condition-name-1 and data-name-1 are shown for context and are not part
of the subscript general format.

Syntax rules

1. The data description entry containing data-name-1 or the data-name associated
with condition-name-1 shall contain an OCCURS clause or shall be subordinate
to a data description entry that contains an OCCURS clause.

2. Except as defined in syntax rule 4, when a reference is made to a table element,
the number of subscripts shall equal the number of OCCURS clauses in the
description of the table element being referenced. This allows a maximum of
seven subscripts to be specified. When more than one subscript is required, the
subscripts are written in the order of successively less inclusive dimensions of
the table.

3. Index-name-1 shall correspond to a data description entry in the hierarchy of the
table being referenced that contains an INDEXED BY phrase specifying that
index-name.

4. Each table element reference shall be subscripted except when such reference
appears:

a. As the subject of a SEARCH statement.

b. Ina REDEFINES clause.

c. Inthe KEY IS phrase of an OCCURS clause.
d. In a SORT statement that references a table.
e

In the FROM, TO, or USING clauses of a screen description entry when the
subject of the entry has an OCCURS clause.

5. The subscript ALL may be used only when the subscripted identifier is used as a
function argument and may not be used when condition-name-1 is specified.
(See Arguments.)

General rules

1. A subscript is determined as follows:

a. If ALL is specified, the subscript is all of the possible values of a subscript for
the associated table as specified in the rules for the statements for which
ALL is allowed.

Elastic COBOL Language Reference Manual 58



b. If index-name-1 is specified, the subscript is the occurrence number
represented by the value of the index referenced by index-name-1 modified
by integer-1. The mapping of the value of the index referenced by index-
name-1 to an occurrence number is defined by the implementor.  If integer-
1 is specified, the subscript is the occurrence number derived from the index
incremented by the value of integer-1 (when the operator + is used) or
decremented by the value of integer-1 (when the operator B is used).

2. The value of a subscript shall be a positive integer. The lowest possible
occurrence number represented by a subscript is 1, which identifies the first
element of any given dimension of a table. Each successive element within that
dimension of the table is referenced by occurrence numbers of 2, 3, ... . The
highest permissible occurrence number for any given dimension of the table is
the maximum number of occurrences of the item as specified in the associated
OCCURS clause. If the value of the subscript is less than one or greater than
the highest permissible occurrence number, a runtime exception is given.

NULL

NULL is a predefined object identifier that references the NULL object.

General format
NULL

Syntax rules

NULL shall not be specified as a receiving operand.

General rules

NULL always references the same object, the NULL object.

SELF and SUPER

SELF and SUPER are predefined object identifiers that reference the object on
which the current method is executing.

General format
{ SELF | SUPER }

Syntax rules

1. This identifier format shall not be specified as a receiving operand.

2. SUPER may be specified only as the object in an object-property identifier or as
the object used to invoke a method with the invoke statement or an in-line
invocation of a method.

Elastic COBOL Language Reference Manual 59



General rules

1. The predefined object identifiers SELF or SUPER both references the object that
was used to invoke the method in which SELF or SUPER appear.

2. If SELF is specified for a method invocation, the method resolution is based
upon the set of methods defined for the runtime class of the object referenced by
SELF.

NOTE - The method resolution is not limited to the methods that are defined for
the class that contains the method invocation. The object referenced by SELF at
run time may be an object of a subclass of the class that contains the invocation.
Thus method invocation through the predefined object identifier SELF uses the
same method binding mechanism as is used for any other object identifier, based
on the runtime class of the object..

3. If SUPER is specified for a method invocation, the method resolution shall
ignore all the methods defined in the class containing the invocation and all the
methods defined in any subclass of that class. Thus the invoked method will be
one that is inherited from a superclass.

4. If class-name-1 is specified, the search for the method shall include only those
methods defined for class-name-1.

Predefined-address

NULL is a predefined address of class pointer.

General format
NULL

Syntax rules

This format may be used only as a sending operand in a SET statement; as an
argument in a program-prototype format program call, a function-prototype format
function call, or a method invocation; or in a data-pointer or program-pointer relation-
condition.

General rules

1. When associated with a data-pointer, the predefined address NULL is of
category data-pointer and always references the same address, the NULL
address, and is guaranteed not to represent the address of any data item.

2. When associated with a program-pointer, the predefined address NULL is of
category program-pointer and always references the same address, the NULL
address, and is guaranteed not to represent the address of any program.

General Format
ADDRESS OF identifier-1

Elastic COBOL Language Reference Manual 60



Syntax rules

1. Identifier-1 shall reference a data item defined in the file section, working-
storage section, local-storage section, or linkage section.

2. Identifier-1 shall not reference an object reference.

3. This identifier format shall not be specified as a receiving operand.

General rules

Data-address-identifier creates a unique data item of class pointer and category
data-pointer that contains the address of identifier-1.

External switch

An external switch is a software device, SWITCH-1 through SWITCH-26, that is
used to indicate that one of two alternate states exists. These alternate states are
referred to as the on status and the off status of the associated external switch.

The status of an external switch may be interrogated by testing condition-names
associated with that switch. The association of a condition-name with an external
switch and the association of a user-specified mnemonic-name with the name
SWITCH-1 through SWITCH-26 that names an external switch are established in
the SPECIAL-NAMES paragraph of the environment division.

Switches are set according to the main program and are shared among all programs
in the current run-unit. The switches are set from the command-line using
parameters /A through /Z, /a through /z, or /1 through /9. All switches are initially in
the off position.

The status of all switches may be altered by the SET statement.
Uniqueness of reference

Every user-defined name in a source element is assigned, by the user, to name a
resource that is to be used in solving a data processing problem. (See User-defined
words.) In order to use a resource, a statement in a source element shall contain a
reference that uniquely identifies that resource. In order to ensure uniqueness of
reference, a user-defined name may be qualified, subscripted, or reference modified
as described in the following paragraphs.

When the same name has been assigned in separate source elements to two or
more occurrences of a resource of a given type, and when qualification by itself
does not allow the reference in one of those source elements to differentiate
between the two identically named resources, then certain conventions that limit the
scope of names apply. These conventions ensure that the resource identified is that
described in the source element containing the reference. (See Scope of names.)

Every user-defined name explicitly referenced in a compilation group shall be
uniquely referenced because either:

1. No other name has the identical spelling and hyphenation.

Elastic COBOL Language Reference Manual 61



It is unique within the context of a REDEFINES clause.

The name exists within, or is associated with a data definition entry within, a
hierarchy of names such that reference to the name may be made unique by
mentioning one or more of the higher level names in the hierarchy.

These higher level names are called qualifiers and this process that specifies
uniqueness is called qualification. Identical user-defined names may appear in a
source unit; however, uniqueness shall then be established through qualification
for each user-defined name explicitly referenced, except as specified in rules 2
and 3. All available qualifiers need not be specified so long as uniqueness is
established. Reserved words naming the special registers require qualification to
provide uniqueness of reference whenever a source unit would result in more
than one occurrence of any of these special registers. A paragraph-name or
section-name appearing in a source element may not be referenced from any
other source element.

4. A source element is contained within a source element or contains another
source element. (See Scope of names.)

Regardless of the above, the same data-name shall not be used as the name of
an external record and as the name of any other external data item described in
any source element contained within or containing the source element that
describes that external data record. The same data-name shall not be used as
the name of an item possessing the global attribute and as the name of any other
data item described in the source element that describes that global data item.

General format

Format 1 (data-or-condition-or-index-name):
{ data-name-1 | condition-name-1 | index-name-1 }
{ {IN|OF} {file-name-1} | { {IN|OF} data-name-2 } ... [{IN|OF} file-name-1] } }

Format 2 (procedure-name):
Paragraph-name-1 {IN|JOF} section-name-1

Format 3 (library-text-name):
Text-name-1 {IN|OF} library-name-1

Format 4 (linage-counter):
LINAGE-COUNTER {IN|OF} filename-2

Format 5 (screen-name):
Screen-name-1 { {IN|JOF} screen-name-2} ...

Format 6 (record-key-name):
Record-key-name-1 [ {IN|JOF} file-name-3 ]

Syntax rules

1. For each non unique user-defined name that is explicitly referenced, uniqueness
shall be established through a sequence of qualifiers that precludes any
ambiguity of reference.

Elastic COBOL Language Reference Manual 62



2. A name may be qualified even though it does not need qualification; if there is
more than one combination of qualifiers that ensures uniqueness, then any such
set may be used.

The words IN and OF are equivalent.

In format 1, each qualifier shall be the name associated with a level indicator, the
name of a group item to which the item being qualified is subordinate, or the
name of the conditional variable with which the condition-name being qualified is
associated. Qualifiers are specified in the order of successively more inclusive
levels in the hierarchy. For a condition-name, the hierarchy is that of the
associated conditional variable. No more than fifty qualifiers shall be specified.

In format 1, data-name-1 or data-name-2 may be a record-name.

If explicitly referenced, a paragraph-name shall not be duplicated within a
section. When a paragraph-name is qualified by a section-name, the word
SECTION shall not appear. A paragraph-name need not be qualified when
referred to from within the same section. A paragraph-name or section-name
appearing in a program may not be referenced from any other source element.

Paragraph names shall not be duplicated within a section.

7. LINAGE-COUNTER shall be qualified each time it is referenced if more than one
file description entry containing a LINAGE clause has been specified in the
source unit.

Explicit and implicit references

A source element may reference data items either explicitly or implicitly in procedure
division statements. An explicit reference occurs when the name of the referenced
item is written in a procedure division statement or when the name of the referenced
item is copied into the procedure division by the processing of a COPY statement.
An implicit reference occurs when the item is referenced by a procedure division
statement without the name of the referenced item being written in the source
statement. An implicit reference also occurs, during the execution of a PERFORM
statement, when the index or data item referenced by the index-name or identifier
specified in the VARYING, AFTER, or UNTIL phrase is initialized, modified, or
evaluated by the control mechanism associated with that PERFORM statement.
Such an implicit reference occurs if and only if the data item contributes to the
execution of the statement.

Scope of names

When source units are directly or indirectly contained within other source units, each
source unit may use identical user-defined words to name items independent of the
use of these user-defined words by other source units. (See User-defined words.)
When identically named items exist, a source unit's reference to such a name, even
when it is a different type of user-defined word, is to the item which that source unit
describes rather than to the item, possessing the same name, described in another
source unit.

Elastic COBOL Language Reference Manual 63



The following types of user-defined words may be referenced only by statements
and entries in that source unit in which the user-defined word is declared:

o paragraph-name
o section-name

The following types of user-defined words may be referenced by any source unit
provided that the compiling system supports the associated library or other system
and the entities referenced are known to that system:

o library-name
J text-name

The following types of names, when they are declared within a configuration section,
may be referenced only by statements and entries either in that source unit that
contains a configuration section or in any source unit contained within that source

unit:
o alphabet-name
o class-name
o condition-name
o mnemonic-name
o symbolic-character

Specific conventions, for declarations and references, apply to the following types of
user-defined words when the conditions listed above do not apply:

o class-name (for object orientation)
o condition-name
o constant-name
o data-name

. file-name

o index-name

o interface-name
o method-name

o program-name
o record-name

o screen-name

Conventions for program-names

The program-name of a program is declared in the PROGRAM-ID paragraph of the
program's identification division. A program-name may be referenced only by the

Elastic COBOL Language Reference Manual 64



CALL statement, the CANCEL statement, the SET statement, and the end program
marker. The program-names allocated to programs constituting a run unit are not
necessarily unigue but, when two programs in a run unit are identically named, at
least one of those two programs shall be directly or indirectly contained within
another separately-compiled program that does not contain the other of those two
programs.

The following rules regulate the scope of a program-name for the CALL, CANCEL,
and SET statements:

1. If the program-name is that of a program that does not possess the common
attribute and that is directly contained within another program, that program-
name may be referenced only by statements included in that containing program
or the program itself.

2. If the program-name is that of a program that does possess the common
attribute and that is directly contained within another program, that program-
name may be referenced only by statements included in that containing program
and any programs directly or indirectly contained within that containing program,
except any programs contained in that program possessing the common
attribute.

3. If the program-name is that of a program that is separately compiled, that
program-name may be referenced by statements included in any program in the
run unit, except programs it directly or indirectly contains.

Conventions for condition-names, data-names, file-names, record-
names, report-names, screen-names, and type-names

When condition-names, data-names, file-names, record-names, screen-names, and
type-names are declared in a source element, these names may be referenced only
by that source element except when one or more of the names is global and the
source element contains other source elements.

The requirements governing the uniqueness of the names allocated by a single
source element to be condition-names, data-names, file-names, record-names,
screen-names, and type-names are explained elsewhere in these specifications.
(See User-defined words.)

A source element may not reference any condition-name, data-name, file-name,
record-name, screen-names, or type-names declared in any source element it
contains.

A global name may be referenced in the source element in which it is declared or in
any source elements that are directly or indirectly contained within that source
element.

When a source element, source element B, is directly contained within another
source element, source element A, and both source elements may define a
condition-name, a data-name, a file-name, a record-name, or a screen-name using
the same user-defined word. When such a duplicated name is referenced in source
element B, the following rules are used to determine the referenced item:

1. The set of names to be used for determination of a referenced item consists of
all names that are defined in source element B and all global names that are

Elastic COBOL Language Reference Manual 65



defined in source element A and in any source elements that directly or indirectly
contain source element A. Using this set of names, the normal rules for
qualification and any other rules for uniqueness of reference are applied until
one or more items is identified.

If only one item is identified, it is the referenced item.

If more than one item is identified, no more than one of them may have a name
local to source element B. If zero or one of the items has a name local to source
element B, the following rules apply:

a. If the name is declared in source element B, the item in source element B is
the referenced item.

b. Otherwise, if source element A is contained within another source element,
the referenced item is:

o The item in source element A if the name is declared in source
element A.
o The item in the containing source element if the name is not

declared in source element A and is declared in the source element
containing source element A. This rule is applied to further containing
source elements until a single valid name has been found.

Conventions for index-names

If a data item possessing the global attribute includes a table described with an
index-name, that index-name also possesses the global attribute. Therefore, the
scope of an index-name is identical to that of the data-name which names the table
whose index is named by that index-name and the scope of name rules for data-
names apply. Index-names may not be qualified.

Conventions for class-names and interface-names

The class-name of a class referenced within a source element shall be either the
name of the containing class definition or declared in the REPOSITORY paragraph
of that or a containing source element.

Within a compilation group, there shall be at most one class definition for a given
class-name.

The interface-name of an interface referenced within a source element shall be
either the name of the containing interface definition or declared in the
REPOSITORY paragraph of that or a containing source element.

A class-name or interface-name declared in the REPOSITORY paragraph of a
source element may be used in that source element and any nested source unit.

Class and category of data

Every elementary data item, every literal, and every function has a class and a
category. The class and category of a data item are defined by its picture character
string, by the BLANK WHEN ZERO clause, or by its usage; the class and category

Elastic COBOL Language Reference Manual 66



of an intrinsic function are specified by the definition of that intrinsic function in
Intrinsic functions; the class and category of a user function are specified by the
description of the item specified in the RETURNING phrase of the procedure
division header of the function prototype; the class and category of a literal are
defined in Literals.

When the TYPE clause is specified in the data description of a strongly typed item,
the class of the item is the specific type-name specified.

The category of a group item is alphanumeric.

Table 2, Category and class relationships for elementary items, depicts the
relationship of categories to classes of data for untyped elementary items.

Category and class relationships for elementary items

Class Category

Alphabetic Alphabetic

Alphanumeric Alphanumeric

Alphanumeric-edited Numeric-edited

Index Index

National National
National-edited

Numeric Numeric

Object Object-reference

Pointer Data-pointer
Program-pointer

Operators

Arithmetic operators

There are five binary arithmetic operators and two unary arithmetic operators that
may be used in arithmetic expressions. They are represented by specific characters
that shall be preceded by a space and followed by a space except that no space
shall be required between a left parenthesis and a unary operator or between a
unary operator and a left parenthesis.

Arithmetic Operators

Binary Arithmetic Operator Meaning
- Addition
* Subtraction
/ Multiplication
Division
** Exponentiation
Unary Arithmetic Operator Meaning
+ The effect of multiplication by the numeric literal +1
- The effect of multiplication by the numeric literal -1

Concatenation operator

The concatenation operator is the COBOL character '&', which shall be immediately
preceded and followed by a separator space.

Elastic COBOL Language Reference Manual 67



Relational operators

The relational operators specify the type of comparison to be made in a relation
condition. A space shall precede and follow each reserved word of the relational
operator. The relational operators meaning 'greater than or equal to' and 'less than
or equal to' are extended relational operators. All other relational operators are
simple relational operators. Use of the word NOT is prohibited within the string of
words that represent an extended relational operator. When used, NOT is inserted
into the string of words that comprise a simple relational operator, and that string,
now including the word NOT, is one relational operator that defines the comparison

to be executed for truth value.

Note - The relational operator IS NOT GREATER THAN is equivalent to IS LESS
THAN OR EQUAL TO and IS NOT LESS THAN is equivalent to IS GREATER THAN

OR EQUAL TO.

Relational Operator

Meaning Relational Operator

Greater than or not greater than IS [NOT] GREATER THAN
IS [NOT] >

Less than or not less than IS [NOT] LESS THAN
IS [NOT] <

Equal to or not equal to IS [NOT] EQUAL TO
IS[NOT] =

Greater than or equal to

IS GREATER THAN OR EQUAL TO
IS >=

Less than or equal to

IS LESS THAN OR EQUAL TO
IS <=

EXxpressions

Arithmetic expressions

An arithmetic expression may be an identifier of a numeric elementary data item or a
function, a numeric literal, the figurative constant ZERO (ZEROS, ZEROES), such
identifiers, figurative constants, and literals separated by arithmetic operators, two
arithmetic expressions separated by an arithmetic operator, or an arithmetic
expression enclosed in parentheses. Any arithmetic expression may be preceded
by a unary operator. The permissible combinations of identifiers, numeric literals,
arithmetic operators, and parentheses are given in table 3, Combination of symbols

in arithmetic expressions.

Formation and evaluation rules for arithmetic expressions depend on whether the
mode of arithmetic in effect is native or standard.

Arithmetic

The following rules shall apply regardless of the mode of arithmetic that is in effect:

Elastic COBOL Language Reference Manual

68



1.

3.

Parentheses may be used in arithmetic expressions to specify the order in which
elements are to be evaluated. Expressions within parentheses are evaluated
first, and, within nested parentheses, evaluation proceeds from the least
inclusive set to the most inclusive set. When parentheses are not used, or
parenthesized expressions are at the same level of inclusiveness, the following
hierarchical order of execution is implied:

1st - Unary plus and minus
2nd - Exponentiation

3rd - Multiplication and division
4th - Addition and subtraction

Parentheses are used to eliminate ambiguities in logic where consecutive
operations of the same hierarchical level appear, to modify the normal
hierarchical sequence of execution in expressions where it is necessary to have
some deviation from the normal precedence, or to emphasize the normal
sequence for the sake of clarity. When the sequence of execution is not
specified by parentheses, the order of execution of consecutive operations of the
same hierarchical level is from left to right.

The ways in which identifiers, literals, operators, and parentheses may be
combined in an arithmetic expression are summarized in table 3, Combinations
of symboils in arithmetic expressions, where:

a. The letter 'P' indicates a permissible pair of symbols.
b. The character '-' indicates an invalid pair.

Combinations of symbols in arithmetic expressions

Second Second Second Second Second
symbol symbol symbol symbol symbol

First symbol Identifier or | +-*/[** Unary +or- | ( )
Literal

Identifier or - P - - P

literal

T P - P P -

Unary + or - P - - [3) B

( P - P P -

) - P - - P

4. An arithmetic expression may begin only with the symbol '(, '+, 'B', an

Elastic COBOL Language Reference Manual

identifier, or a literal and may end only with a "), an identifier, or a literal. There
shall be a one-to-one correspondence between left and right parentheses of an
arithmetic expression such that each left parenthesis is to the left of its
corresponding right parenthesis. If the first operator in an arithmetic expression
is a unary operator, it shall be immediately preceded by a left parenthesis if that
arithmetic expression immediately follows an identifier or another arithmetic
expression.

The following rules apply to evaluation of exponentiation in an arithmetic
expression:

69



a. If the value of an expression to be raised to a power is zero, the exponent
shall have a value greater than zero. Otherwise, the size error condition is
raised.

b. If the evaluation yields both a positive and a negative real number, the value
returned as the result is the positive number.

c. If the value of an expression to be raised to a power is less than zero, the
evaluation of the exponent shall result in an integer. Otherwise, the size
error condition is raised.

6. Arithmetic expressions allow the user to combine arithmetic operations without
the restrictions on composite of operands and/or receiving data items.

Native arithmetic

Temporary arithmetic items are stored in arbitrary precision arithmetic items.
Truncation or rounding occurs at the last step whenever multi-step arithmetic occurs.

Concatenation expressions

A concatenation expression consists of two operands separated by the
concatenation operator.

General format

{ literal-1 | concatenation-expression-1} & literal-2

Syntax rules

Both operands shall be of the same class, either alphanumeric or national, except
that a figurative constant may be specified as one or both operands. Neither literal-1
nor literal-2 shall be a figurative constant that begins with the word 'ALL".

Literal-2 cannot be a national literal.

General rules

1. The class of the concatenation expression resulting from the concatenation
operation shall be:

a. when one of the operands is a figurative constant, the class of the literal or
concatenation expression that constitutes the other operand, or

b. when both of the operands is a figurative constant, the class alphanumeric,
or

c. the same class as the operands.

2. The value of a concatenation expression shall be the concatenation of the value
of the literals, figurative constants, and concatenation expressions of which it is
composed.

Elastic COBOL Language Reference Manual 70



3. Aconcatenation expression shall be equivalent to a literal of the same class and
value, and may be used anywhere a literal of that class may be used.

Conditional expressions

Conditional expressions identify conditions that are tested to enable the object
program to select between alternate paths of control depending upon the truth value
of the condition. A conditional expression has a truth value represented by either
true or false. Conditional expressions are specified in the EVALUATE, IF,
PERFORM, and SEARCH statements. There are two categories of conditions
associated with conditional expressions: simple conditions and complex conditions.
Each may be enclosed within any number of paired parentheses, in which case its
category is not changed.

Simple conditions

The simple conditions are the relation, class, condition-name, switch-status, and
sign conditions. A simple condition has a truth value of true or false. The inclusion
in parentheses of simple conditions does not change the simple condition truth
value.

Relation conditions

A relation condition specifies a comparison of two operands. The relational operator
that joins the two operands specifies the type of comparison. A relation condition
shall have a truth value of 'true' if the specified relation exists between the two
operands, and a truth value of 'false' if the relation condition does not exist.

A relation condition involving operands of category data-pointer is a data-pointer
relation condition; a relation condition involving operands of category program-
pointer is a program-pointer relation condition; otherwise, the relation condition is a
general relation condition.

Comparisons are defined for the following:
1. Two operands of class humeric.

Two operands of class alphabetic.
Two operands of class alphanumeric.

Two operands of class national.

o & D

Two operands where one is a numeric integer and the other is class
alphanumeric or national.

6. Two operands of different classes where each operand is from the set of classes
alphanumeric, alphabetic, or national.

Comparisons involving indexes or index data items.
Comparisons involving two object reference identifiers.

Two operands of class pointer where each operand is of the same category.

Elastic COBOL Language Reference Manual 71



For purposes of comparison, a group item shall be treated as an elementary
alphanumeric data item. A class alphabetic operand shall be treated as though it
were an operand of class alphanumeric.

The first operand is called the subject of the condition; the second operand is called
the object of the condition. A relation condition shall contain at least one reference
to a data item or function.

General format
Format 1 (general-relation):
{ identifier-1 | literal-1 | arithmetic-expression-1 | index-name-1}
relop
{ identifier-2 | literal-2 | arithmetic-expression-2 | index-name-2 }

where relop is:
{IS [NOT] GREATER THAN | IS [NOT] > | IS [NOT] LESS THAN | IS [NOT] < | IS [NOT]
EQUAL TO | IS [NOT] = | IS GREATER THAN OR EQUAL TO | IS >=| IS LESS THAN
OR EQUAL TO | IS <=}

Format 3 (pointer or object):
identifier-3 { IS [NOT] EQUAL TO | IS [NOT] = } identifier-4

Format 4 (object instance of)
object-identifier-5 IS class-name-1

Syntax rules
FORMAT 1

Identifier-3 and identifier-4 shall reference data items of class pointer or object, and
both shall be of the same category.

FORMAT 4
Evaluates as true if object-identifier-5 is an instance of class-name-1.

Comparison of humeric operands

For operands whose class is numeric, a comparison is made with respect to the
algebraic value of the operands regardless of the manner in which their usage is
described. The length of the literal or arithmetic expression operands, in terms of
the number of digits represented, is not significant. Zero is considered a unique
value regardless of the sign. When standard arithmetic is in effect, the number of
digits of the standard intermediate data item used and whether there is rounding
shall be as specified in the rounding rules for standard arithmetic. (See Rounding
rules.)

Comparison of a numeric integer operand with an operand of class alphanumeric
or national
The numeric integer operand shall be an integer literal or an integer numeric data
item of the usage display or national. The other operand may be a literal or data
item of class alphanumeric or national.

The integer is treated as though it were moved to an elementary data item of the
same length as the integer, in terms of standard data format characters, and of the
same class and usage as the comparand. Comparison then proceeds by the rules
for comparison of two operands of the class of the comparand.

Elastic COBOL Language Reference Manual 72



Comparison of mixed alphanumeric or national operands

An operand of class alphanumeric or national may be compared to another operand
of class alphanumeric or national. When the classes of the operands differ, the
alphanumeric operand is treated as though it were converted and moved in
accordance with the rules of the MOVE statement to an elementary data item of
class national with the same length in terms of character positions as the
alphanumeric operand. Comparison then proceeds by the rules for comparison of
two operands of class national.

Comparison of alphanumeric operands

An operand of class alphanumeric may be compared to another operand of class
alphanumeric or to another operand treated as class alphanumeric for the purposes
of comparison. Comparison is made with respect to the collating sequence of
characters specified for the current alphanumeric program collating sequence. The
length of an operand is the number of alphanumeric character positions in the
operand. There are two cases to consider: operands of equal length and operands
of unequal length.

1. Operands of equal length. Comparison effectively proceeds by comparing
alphanumeric characters in corresponding alphanumeric character positions
starting from the high-order end and continuing until either a pair of unequal
characters is encountered or the low-order end of the operand is reached,
whichever comes first. The operands are determined to be equal if all pairs of
corresponding alphanumeric characters are equal.

The first pair of unequal characters encountered is compared to determine their
relative position in the alphanumeric collating sequence. The operand that
contains the character that is positioned higher in the alphanumeric collating
sequence is the greater operand.

2. Operands of unequal length. If the operands are of unequal length, comparison
proceeds as though the shorter operand were extended on the right by sufficient
alphanumeric spaces to make the operands of equal length. The preceding
rules for operands of equal length then apply.

Comparison of national operands

An operand of class national may be compared with another operand of class
national. Comparison is made with respect to the collating sequence of characters
specified for the current national program collating sequence. The length of an
operand is the number of national character positions in the operand. There are two
cases to consider: operands of equal length and operands of unequal length.

1. Operands of equal length. Comparison effectively proceeds by comparing
national characters in corresponding national character positions starting from
the high-order end and continuing until either a pair of unequal characters is
encountered or the low-order end of the operand is reached, whichever comes
first. The operands are determined to be equal if all pairs of corresponding
national characters are equal.

The first pair of unequal characters encountered is compared to determine their
relative position in the national collating sequence. The operand that contains
the character that is positioned higher in the national collating sequence is the
greater operand.

Elastic COBOL Language Reference Manual 73



2. Operands of unequal length. If the operands are of unequal length, comparison
proceeds as though the shorter operand were extended on the right by sufficient
national spaces to make the operands of equal length. The preceding rules for
operands of equal length then apply.

Comparisons involving index-names and/or index data items
Relation tests may be made only between

1. two index-names. The result is the same as if the corresponding occurrence
numbers were compared.

2. anindex-name and a numeric data item or numeric literal. The occurrence
number that corresponds to the value of the index-name is compared to the data
item or literal.

3. anindex data item and an index-name or another index data item. The actual
values are compared without conversion.

Comparisons between object reference identifiers

An object reference identifier shall only be compared with another object reference
identifier, or one of the predefined object identifiers defined in, Predefined object
identifiers.

Comparison of an object reference identifier shall be only with the relational
operators for equality and inequality.

For object reference identifiers, the relation 'object-identifier-1 = object-identifier-2'
has a true value if, and only if, the object identified by object-identifier-1 is the same
object as the object identified by object-identifier-2.

Comparison of pointer operands
The operands are equal if they reference the same address.

Class condition

The class condition determines whether an operand is numeric, alphabetic,
alphabetic-lower, alphabetic-upper, Boolean, or contains only the characters in the
set of characters specified by the CLASS clause as defined in the SPECIAL-NAMES
paragraph of the environment division.

General format
identifier-1 IS [NOT] { NUMERIC | ALPHABETIC | ALPHABETIC-LOWER |
ALPHABETIC-UPPER | class-name-1}

Syntax rules

1. If the NUMERIC phrase is specified, identifier-1 shall reference a data item
whose usage is display or national or whose category is numeric.

2. If the NUMERIC phrase is not specified, identifier-1 shall reference a data item
whose usage is display or national. If identifier-1 is a function-identifier, it shall
reference an alphanumeric or national function.

Elastic COBOL Language Reference Manual 74



3. NUMERIC shall not be specified if the category of identifier-1 is alphabetic or if
identifier-1 is a group item composed of elementary items whose data
description indicates the presence of operational sign(s).

4. ALPHABETIC, ALPHABETIC-LOWER, or ALPHABETIC-UPPER shall not be
specified if the category of identifier-1 is Boolean or numeric.

General rules

1. When the class condition does not include the word NOT and identifier-1 is a
zero-length group item, the result of the class test is always false.

2. When the class condition includes the word NOT and identifier-1 is a zero-length
group item, the result of the class test is always true.

3. If identifier-1 is not a zero-length group item, the truth value of the class
condition without the word NOT is determined as follows:

a. If NUMERIC is specified,
1. If the category of identifier-1 is numeric,

o If the usage of identifier-1 is implicitly or explicitly display or
national, the condition is true if the presence or absence of an
operational sign in the content of identifier-1 is in agreement with the
data description of identifier-1 and if the content, except for the
operational sign, consists entirely of the characters 0, 1, 2, 3, ..., 9. Valid
operational signs are defined in 13.17.48, SIGN clause.

o If the usage of identifier-1 is not display or national, the condition
is true if the content of identifier-1 consists entirely of a valid
representation for the usage and, if a PICTURE clause is specified, its
numeric value is within the range of values implied by the PICTURE
clause.

2. If the category of identifier-1 is not numeric, the condition is true if the
content of identifier-1 consists entirely of the characters 0, 1, 2, 3, ..., 9.

o If ALPHABETIC is specified, the condition is true if the content of
the data item referenced by identifier-1 consists entirely of the uppercase
letters A, B, C, ..., Z, space, or the lowercase letters a, b, c, ..., z, space,
or any combination of the uppercase and lowercase letters and spaces.

o If ALPHABETIC-LOWER is specified, the condition is true if the
content of the data item referenced by identifier-1 consists entirely of the
lowercase letters a, b, ¢, ..., z, and space.

o If ALPHABETIC-UPPER is specified, the condition is true if the
content of the data item referenced by identifier-1 consists entirely of the
uppercase letters A, B, C, ..., Z, and space.

° If class-name-1 is specified, the condition is true if the content of
the data item referenced by identifier-1 consists entirely of the characters
listed in the definition of class-name-1 in the SPECIAL-NAMES
paragraph.

4. If the word NOT is specified, the truth value is reversed.

Elastic COBOL Language Reference Manual 75



Condition-name condition (conditional variable)

In a condition-name condition, a conditional variable is tested to determine whether
or not its value is equal to one of the values associated with condition-name-1.

General Format
condition-name-1

Rules

1. If condition-name-1 is associated with a range or ranges of values, then the
conditional variable is tested to determine whether or not its value falls in this
range, including the end values.

2. The rules for comparing a conditional variable with a condition-name value are
the same as those specified for relation conditions.

3. The result of the test is true if one of the values corresponding to condition-
name-1 equals the value of its associated conditional variable.

Switch-status condition

A switch-status condition determines the on or off status of an implementor-defined
external switch. The switch-name and the on or off value associated with the
condition shall be named in the SPECIAL-NAMES paragraph of the environment
division.

General format

Rules

The result of the test is true if the switch is set to the specified position
corresponding to condition-name-1.

Sign condition

The sign condition determines whether or not the algebraic value of an arithmetic
expression is less than, greater than, or equal to zero.

General format
arithmetic-expression-1 IS [NOT] { POSITIVE | NEGATIVE | ZERO }

Rules

When used, NOT and the next key word specify one sign condition that defines the
algebraic test to be executed for truth value. An operand is positive, if its value is
greater than zero, negative if its value is less than zero, and zero if its value is equal
to zero.

NOTE - NOT ZERQO is a truth test for a nonzero (positive or negative) value.

Complex conditions

A complex condition is formed by combining simple conditions and/or complex
conditions with logical connectors (logical operators 'AND' and 'OR') or by

Elastic COBOL Language Reference Manual 76



negating these conditions with logical negation (the logical operator 'NOT'). The
truth value of a complex condition, whether parenthesized or not, is the truth value
that results from the interaction of the stated logical operators on its constituent
conditions.

Logical operators meanings

Logical Operator Meaning

AND Logical conjunction; the truth value is true if both of the conjoined
conditions are true; false if one or both of the conjoined conditions is
false.

OR Logical inclusive OR; the truth value is true if one or both of the included
conditions is true; false if both included conditions are false.

NOT Logical negation or reversal of truth value; the truth value is true if the
condition is false; false if the condition is true.

The logical operators shall be preceded by a space and followed by a space.

Negated conditions

A condition is negated by use of the logical operator ‘NOT’ that reverses the truth
value of the condition to which it is applied. Including a negated condition in
parentheses does not change its truth value.

NOTE - The truth value of a hegated condition is true if the truth value of the
condition being negated is false; the truth value of a negated condition is false if the
truth value of the condition being negated is true.

General format
NOT condition-1

Combined conditions

A combined condition results from connecting conditions with one of the logical
operators 'AND' or 'OR".

General format
condition-1 { {AND|OR} condition-2 } ...

Precedence of logical operators and the use of parentheses

In the absence of the relevant parentheses in a complex condition, the precedence
(i.e., binding power) of the logical operators determines the conditions to which the
specified logical operators apply and implies the equivalent parentheses. The order
of precedence is 'NOT', 'AND’, 'OR".

NOTE 1 Specifying 'condition-1 OR NOT condition-2 AND condition-3' implies and
is equivalent to specifying 'condition-1 OR ((NOT condition-2) AND condition-3)'.

Where parentheses are used in a complex condition, they determine the binding of
conditions to logical operators. Parentheses may, therefore, be used to depart from
the normal precedence of logical operators as specified above. (See Order of
evaluation of conditions.)

NOTE 2 The example complex condition above may be given a different meaning
by specifying it as '(condition-1 OR (NOT condition-2)) AND condition-3'.

Elastic COBOL Language Reference Manual 77



Table 5, Combinations of conditions, logical operators, and parentheses, indicates
the ways in which conditions and logical operators may be combined and
parenthesized. There shall be a one-to-one correspondence between left and right
parentheses such that each left parenthesis is to the left of its corresponding right
parenthesis.

Combinations of conditions, logical operators, and parentheses

In a conditional | Ina In a left-to-right In a left-to-right
expression: conditional sequence of sequence of elements:
expression: elements:
Given the May element be | May element | Element, when not Element, when not last,
Following first? be last? first, may be immediately
element: may be immediately | followed by only:
preceded by only:
simple- Yes Yes OR, NOT, AND, ( OR, AND, )
condition
OR or AND No No Simple-condition, ) Simple-condition, NOT, (
NOT Yes No OR, AND, ( Simple-condition, (
( Yes No OR, NOT, AND, ( Simple-condition, NOT, (
) No Yes Simple-condition, ) OR, AND, )

NOTE - The element pair 'OR NOT' is permissible while the pair

‘NOT OR' is not

permissible; the pair 'NOT (' is permissible while the pair 'NOT NOT" is not
permissible

Abbreviated combined relation conditions

When simple or negated simple relation conditions are combined with logical
connectives in a consecutive sequence such that a succeeding relation condition
contains a subject or subject and relational operator that is common with the
preceding relation condition, and no parentheses are used within such a
consecutive sequence, any relation condition except the first may be abbreviated by:

1. The omission of the subject of the relation condition, or

2. The omission of the subject and relational operator of the relation condition.

Within a sequence of relation conditions, both forms of omission may be used.

General format

Relation-condition-1

{ AND | OR } { NOT | [NOT] simple-relational-operator | extended-relational-

{

operator}
object-1

}..

Syntax Rules

1. Relation-condition-1 shall not be a Boolean relation condition.

2. The result of implied insertion shall comply with the rules of table 5,
Combinations of conditions, logical operators, and parentheses.

3. The word NOT shall not be followed immediately by the word NOT or the words
IS NOT.

Elastic COBOL Language Reference Manual

78




General rules

1. The effect of using abbreviations is as if the last preceding stated subject were
inserted in place of the omitted subject, and the last stated relational operator
were inserted in place of the omitted relational operator. The insertion of an
omitted subject and/or relational operator terminates once a complete simple
condition is encountered within a complex condition.

2. The interpretation applied to the use of the word NOT in an abbreviated
combined relation condition is as follows:

a. If an extended relational operator immediately follows the word NOT, then
the NOT is interpreted as a logical operator; otherwise,

b. If the relational operator following the word NOT is a simple relational
operator, then the NOT participates as part of the simple relational operator;
otherwise,

c. The NOT is interpreted as a logical operator and, therefore, the implied
insertion of subject or relational operator results in a negated relation
condition.

NOTE - Some examples of abbreviated combined and negated combined relation
conditions and expanded equivalents follow.

Abbreviated combined relation condition

Abbreviated combined relation Expanded equivalent

condition

a>bANDNOT<cORd ((@a>b)AND (a NOT <¢)) OR (a NOT <d)

a NOT EQUALb OR c (2 NOT EQUAL b) OR (a NOT EQUAL c)

NOTa=bORC (NOT (a=b))OR (a=¢)

NOT (a GREATER b OR <) NOT ((a GREATER b) OR (a <))

NOT (a NOT > b AND c AND NOT d) NOT (((a NOT > b) AND (a NOT > c)) AND (NOT (a NOT
> d))

Order of evaluation of conditions

Parentheses, both explicit and implicit, denote a level of inclusiveness within a
complex condition. Two or more conditions connected by only the logical operator
'AND' or only the logical operator 'OR' at the same level of inclusiveness establish
a hierarchical level within a complex condition. Thus, an entire complex condition
may be considered to be a nested structure of hierarchical levels with the entire
complex condition itself being the most inclusive hierarchical level. Within this
context, the evaluation of the conditions within an entire complex condition begins at
the left of the entire complex condition and proceeds according to the following rule
recursively applied where necessary:

1. The constituent connected conditions within a hierarchical level are evaluated in
order from left to right, and evaluation of that hierarchical level terminates as
soon as a truth value for it is determined regardless of whether all the
constituent connected conditions within that hierarchical level have been
evaluated.

2. Values are established for arithmetic expressions and functions if and when the
conditions containing them are evaluated. Similarly, negated conditions are

Elastic COBOL Language Reference Manual 79



evaluated if and when it is necessary to evaluate the complex condition that they
represent. (See Arithmetic expressions.)

Elastic COBOL Language Reference Manual 80



8. Input/output Files

File attributes

A file has several attributes that apply to the file at the time it is created and may not
be changed throughout the lifetime of the file. The primary attribute is the
organization of the file that describes its logical structure. There are three
organizations: sequential, relative, and indexed. Other fixed attributes of the file
provided by the COBOL program are prime record key, alternate record keys, code
set, the minimum and maximum logical record size, the record type (fixed or
variable), the collating sequence of the keys for indexed files, the minimum and
maximum physical record size, the padding character, and the record delimiter. The
ability to share a file is not a fixed attribute.

IOCS and MSCS

The processing of files is done by the Elastic COBOL runtime. This system is the
input-output control system (IOCS). A subset of this system is used to process files
that reside on mass storage. This is called the mass storage control system
(MSCS). Since relative and indexed files are required to be mass storage resident,
the processing of these files is done by the MSCS. Sequential files can reside on
mass storage or other media, so the processing of these files is by the MSCS or
Elastic COBOL virtual devices.

Organization

There are three file organizations: sequential, relative, and indexed.
Sequential

Sequential files are organized so that each record, except the last, has a unique
successor record; each record, except the first, has a unique predecessor record.
The successor relationships are established by the order of execution of WRITE
statements when the file is created. Once established, successor relationships do
not change except in the case where records are added to the end of a file.

A sequentially organized mass storage file has the same logical structure as a file on
any sequential medium; however, a sequential mass storage file may be updated in
place. When this technique is used, new records may not be added to the file and
each replaced record shall be the same size as the original record.

Relative

A file with relative organization is a mass storage file from which any record may be
stored or retrieved by providing the value of its relative record number.

Conceptually, a file with relative organization is a serial string of areas, each capable
of holding a logical record. Each of these areas is denominated by a relative record



number. Each logical record in a relative file is identified by the relative record
number of its storage area. For example, the tenth record is the one addressed by
relative record number 10 and is in the tenth record area, whether or not records
have been written in any of the first through the ninth record areas.

In order to achieve more efficient access to records in a relative file, the number of
character positions reserved on the medium to store a particular logical record may
be different from the number of character positions in the description of that record
in the program.

Indexed

A file with indexed organization is a mass storage file from which any record may be
accessed by giving the value of a specified key in that record. For each key data
item defined for the records of a file, an index is maintained.

Each such index represents the set of values from the corresponding key data item
in each record. Each index, therefore, is a mechanism that may provide access to
any record in the file.

Each indexed file has a primary index that represents the prime record key of each
record in the file. Each record is inserted in the file, changed, or deleted from the file
based solely upon the value of its prime record key. The prime record key of each
record in the file shall be unique, and it shall not be changed when updating a
record. The prime record key is declared in the RECORD KEY clause of the file
control entry for the file.

Alternate record keys provide alternate means of retrieval for the records of a file.
Such keys are named in the ALTERNATE RECORD KEY clause of the file control
entry. The value of a particular alternate record key in each record need not be
unique. When these values may not be unique, the DUPLICATES phrase is
specified in the ALTERNATE RECORD KEY clause.

Both the prime record and any alternate record keys are made up from one or more
portions of the record area associated with the file. For each key, the number of
such components and their relative position within the record area is a fixed file
attribute, and cannot be changed once the file has been created.

Access modes

The ACCESS MODE clause of the File Description entry specifies the manner in
which the object program operates upon records within a file. The access mode
may be sequential, random, or dynamic.

For files that are organized as relative or indexed, any of the three access modes
may be used to access the file regardless of the access mode used to create the
file. Afile with sequential organization may be accessed only in sequential mode.

Sequential access mode

For sequential organization, the order of sequential access is the order in which the
records were originally written.



For relative organization, the order of sequential access is ascending based on the
value of the relative record number.

Only records that currently exist in the file are made available. The START
statement may be used to establish a starting point for a series of subsequent
sequential retrievals.

For indexed organization, the order of sequential access is ascending based on the
value of the key of reference according to the collating sequence of the file. Any of
the keys associated with the file may be established as the key of reference during
the processing of a file. The order of retrieval from a set of records that have
duplicate key of reference values is the original order of arrival of those records into
that set. The START statement may be used to establish a starting point within an
indexed file for a series of subsequent sequential retrievals.

Random access mode

When a file is accessed in random mode, input-output statements are used to
access the records in a programmer-specified order. The random access mode
may be used only with relative or indexed file organizations.

For a file with relative organization, the programmer specifies the desired record by
placing its relative record number in a relative key data item. With the indexed
organization, the programmer specifies the desired record by placing the value of
one of its record keys in a record key or an alternate record key data item.

Dynamic access mode

With dynamic access mode, the programmer may change at will from sequential
accessing to random accessing, using appropriate forms of input-output statements.
The dynamic access mode may be used only on files with relative or indexed
organizations.

Reel and unit

The terms ‘reel’ and ‘unit’ are synonymous and completely interchangeable. The
treatment of sequential mass storage files is logically equivalent to the treatment of
a file on tape or analogous sequential media. Treatment of a file contained in a
multiple tape file environment is logically equivalent to the treatment of a sequential
single-unit file if the file is wholly contained on one unit.

Reel and unit clauses are used for 10 status only.

Current volume pointer

The current volume pointer is a conceptual entity used in this document to facilitate
exact specification of the current physical volume of a sequential file. The status of
the current volume pointer is affected by the CLOSE, OPEN, READ, and WRITE
statements.



File position indicator

The file position indicator is a conceptual entity used in this document to facilitate
exact specification of the next record to be accessed within a given file during
certain sequences of input-output operations. The setting of the file position
indicator is affected only by the CLOSE, OPEN, READ, and START statements.
The concept of a file position indicator has no meaning for a file opened in the
output or extend mode.

I-O status

The I-O status is a two-character conceptual entity whose value is set to indicate the
status of an input-output operation during the execution of a CLOSE, DELETE,
OPEN, READ, REWRITE, START, UNLOCK or WRITE statement and prior to the
execution of any imperative statement associated with that input-output statement or
prior to the execution of any applicable USE EXCEPTION procedure. The value of
the I-O status is made available to the program through the use of the FILE STATUS
clause in the file control entry for the file.

The I-O status also determines whether an applicable USE EXCEPTION procedure
will be executed. If any condition other than those listed below under the heading
‘Successful Completion’ results, such a procedure may be executed depending on
rules stated elsewhere. If one of the conditions listed under the heading
‘Successful Completion’ results, no such procedure will be executed.

Certain classes of I-O status values indicate critical error conditions. These are:
any that begin with the digit 3 or 4. Upon critical errors, Elastic COBOL chooses to
continue execution of the run unit, and control is transferred to the end of the input-
output statement that produced the critical error condition. Any NOT AT END or
NOT INVALID KEY phrase specified for that statement is ignored.

I-O status expresses one of the following conditions upon completion of the input-
output operation:

1. Successful completion. The input-output statement was successfully
executed.

2. Atend. Asequential READ statement was unsuccessfully executed as a result
of an at end condition.

3. Invalid key. The input-output statement was unsuccessfully executed as a
result of an invalid key condition.

4. Permanent error. The input-output statement was unsuccessfully executed as
the result of an error that precluded further processing of the file. Any specified
exception procedures are executed. The permanent error condition remains in
effect for all subsequent input-output operations on the file unless an
implementor-defined technique is invoked to correct the permanent error
condition.

5. Logic error. The input-output statement was unsuccessfully executed as a
result of an improper sequence of input-output operations that were performed
on the file or as a result of violating a limit defined by the user.



Record operation conflict. The input-output statement was unsuccessfully
executed as a result of the record being locked by another file connector.

File sharing conflict. The input-output statement was unsuccessfully executed
as a result of the file being locked by another file connector.

The values placed in the I-O status for the previously named conditions resulting
from the execution of an input-output operation. If more than one value applies,
Elastic COBOL determines which of the applicable values to place in the I-O
status.

Successful completion

1.

I-O status = 00. The input-output statement is successfully executed and no
further information is available concerning the input-output operation.

I-O status = 04. A READ statement is successfully executed but the length of
the record being processed does not conform to the fixed file attributes for that
file.

I-O status = 05. An OPEN statement is successfully executed but the
referenced optional file is not present at the time the OPEN statement is
executed. If the open mode is I-O or extend, the file has been created.

I-O status = 07. The input-output statement is successfully executed. However,
for a CLOSE statement with the NO REWIND, REEL/UNIT, or FOR REMOVAL
phrase or for an OPEN statement with the NO REWIND phrase, the referenced
file is on a non-reel/unit medium.

At end condition with unsuccessful completion

1.

I-O status = 10. A sequential READ statement is attempted and no next or prior
logical record exists in the file because:

a. NEXT was specified or implied and the end of the file has been reached, or
b. PREVIOUS was specified and the beginning of the file has been reached, or

c. asequential READ statement is attempted for the first time on an optional
input file that is not present.

I-O status = 14. A sequential READ statement is attempted for a relative file
and the number of significant digits in the relative record number is larger than
the size of the relative key data item described for the file.

Invalid key condition with unsuccessful completion

1.

I-O status = 21. A sequence error exists for a sequentially accessed indexed
file. The prime record key value has been changed by the program between the
successful execution of a READ statement through a file connector and the
execution of the next REWRITE statement for that file through the same file
connector, or the ascending sequence requirements for successive record key
values are violated. (See WRITE statement.)



2.

3.

4,

I-O status = 22. An attempt is made either:
a. to write a record that would create a duplicate key in a relative file.

b. to write a record that would create a duplicate prime record key in an
indexed file, or

c. to write or rewrite a record that would create a duplicate alternate record key
when the DUPLICATES phrase is not specified for that alternate record key
in an indexed file.

I-O status = 23. This condition exists because:

a. an attempt is made to randomly access a record that does not exist in the
file; or

b. a START or random READ statement is attempted on an optional input file
that is not present.

I-O status = 24. An attempt is made to write beyond the externally defined
boundaries of a relative or indexed file. The implementor specifies the manner
in which these boundaries are defined. Or, a sequential WRITE statement is
attempted for a relative file and the number of significant digits in the relative
record number is larger than the size of the relative key data item described for
the file.

Permanent error condition with unsuccessful completion

1.

I-O status = 30. A permanent error exists and no further information is available
concerning the input-output operation.

I-O status = 34. A permanent error exists because of a boundary violation; an
attempt is made to write beyond the externally defined boundaries of a
sequential file. The implementor specifies the manner in which these
boundaries are defined.

I-O status = 35. A permanent error exists because an OPEN statement with the
INPUT, I-O, or EXTEND phrase is attempted on a non-optional file that is not
present.

I-O status = 37. A permanent error exists because an OPEN statement is
attempted on a file and that file will not support the open mode specified in the
OPEN statement. The possible violations are:

a. the EXTEND or OUTPUT phrase is specified but the file will not support write
operations.

b. the I-O phrase is specified but the file will not support the input and output
operations that are permitted for the organization of that file when opened in
the 1-O mode.

c. the INPUT phrase is specified but the file will not support read operations.

I-O status = 38. A permanent error exists because an OPEN statement is
attempted on a file previously closed with lock.



6.

I-O status = 39. The OPEN statement is unsuccessful because a conflict has
been detected between the fixed file attributes and the attributes specified for
that file in the program.

Logic error condition with unsuccessful completion

1.

I-O status = 41. An OPEN statement is attempted for a file connector in the
open mode.

I-O status = 42. A CLOSE or UNLOCK statement is attempted for a file
connector not in the open mode.

I-O status = 43. For a mass storage file in the sequential access mode, the last
input-output statement executed for the associated file through a file connector
prior to the execution of a DELETE or REWRITE statement through the same
file connector was not a successfully executed READ statement.

I-O status = 44. A boundary violation exists because:

a. an attempt is made to write or rewrite a record that is larger than the largest
or smaller than the smallest record allowed by the RECORD IS VARYING
clause of the associated file-name, or

b. an attempt is made to rewrite a record to a sequential file and the record is
not the same size as the record being replaced.

c. an attempt is made to write or rewrite a record that is larger than the largest
or smaller than the smallest record allowed by the fixed-length or variable-
length format of the RECORD clause when the implementor has specified
that variable-length records are produced.

I-O status = 46. A sequential READ statement is attempted referencing a file
connector open in the input or 1-O mode and no valid next record has been
established because:

a. The preceding START statement referencing that file connector was
unsuccessful, or

b. The preceding READ statement referencing that file connector was
unsuccessful.

I-O status = 47. The execution of a READ or START statement is attempted
referencing a file connector that is not open in the input or I-O mode.

I-O status = 48. The execution of a WRITE statement is attempted referencing
a file connector that is not open in the correct open mode as follows:

a. If the access mode is sequential, the file connector is not open in the extend
or output mode.

b. If the access mode is dynamic or random, the file connector is not open in
the I-O or output mode.

I-O status = 49. The execution of a DELETE or REWRITE statement is
attempted referencing a file connector that is not open in the I-O mode.



Record operation conflict condition with unsuccessful completion

1. 1-O status = 54. The input-output statement is unsuccessful because the
statement requested a record lock, but this file connector holds the maximum
number of locks allowed by Elastic COBOL (1000).

2. 1-O status = 99. The input-output statement is unsuccessful because a required
record could not be locked. Note that records other than the one specified may
be required in order to obtain the requested record.

Extended File Status Codes

1. I-O status = 90. Not seekable. Random access is required for the operation, but
not available for device. AS/400 error.

I-O status = 91. Cancelled. User cancelled the OPEN.

3. IO Stgtus = 92. Insufficient license. Elastic COBOL license in not sufficient for
operation.

4. 1-0 Status = 93. Network error occurred in network layer.

5. 1-0O Status = 95. READ lock in indexed file.

6. 1-O Status = 96. WRITE lock in indexed file.

7. 1-O Status = 97. Not in Educational. Operation not supported with Educational

Version.

File sharing conflict condition with unsuccessful completion

I-O status = 93. A file sharing conflict condition exists because an OPEN statement
is attempted on a file and that file is already open by another file connector in a
manner that conflicts with this request. The possible violations are:

a. An attempt is made to open a file that is currently open by another file
connector in the sharing with no other mode.

b. An attempt is made to open a file in the sharing with no other mode and the
file is currently open by another file connector.

c. An attempt is made to open a file for I-O or extend and the file is currently
open by another file connector in the sharing with read only mode.

d. An attempt is made to open a file in the sharing with read only mode and the
file is currently open by another file connector in the I-O or extend mode.

e. An attempt is made to open a file in the output mode and the file is currently
open.



Invalid key condition

The invalid key condition may occur as a result of the execution of a DELETE,
READ, REWRITE, START, or WRITE statement. When the invalid key condition
occurs, execution of the input-output statement that recognized the condition is
unsuccessful and the file is not affected.

If the invalid key condition exists after the execution of the input-output operation
specified in an input-output statement, the following actions occur in the order
shown:

1. The I-O status of the file connector associated with the statement is set to a
value indicating the invalid key condition.

2. Ifthe INVALID KEY phrase is specified in the input-output statement, any USE
EXCEPTION file procedure associated with the file connector is not executed
and control is transferred to the imperative-statement specified in the INVALID
KEY phrase. Execution then continues according to the rules for each statement
specified in that imperative-statement. If a procedure branching or conditional
statement that causes explicit transfer of control is executed, control is
transferred in accordance with the rules for that statement; otherwise, upon
completion of the execution of the imperative-statement specified in the INVALID
KEY phrase, control is transferred to the end of the input-output statement and
the NOT INVALID KEY phrase, if specified, is ignored.

3. Ifthe INVALID KEY phrase is not specified in the input-output statement and a
USE AFTER EXCEPTION procedure is associated with the file connector
associated with the input-output statement, the USE AFTER EXCEPTION
procedure is executed and control is transferred according to the rules of the
USE statement. The NOT INVALID KEY phrase is ignored, if it is specified.

4. If the INVALID KEY phrase is not specified in the input-output statement and
there is no USE AFTER EXCEPTION procedure associated with the file
connector associated with the input-output statement, control is transferred to
the end of the input-output statement. The NOT INVALID KEY phrase is
ignored, if it is specified.

If the invalid key condition does not exist after the execution of the input-output
operation specified by an input-output statement, the INVALID KEY phrase is
ignored, if specified. The I-O status of the file connector associated with the
statement is updated and the following actions occur:

1. If the I-O status indicates an unsuccessful completion that is not an invalid key
condition, control is transferred according to the rules of any USE EXCEPTION
file procedure associated with the file connector.

2. If the I-O status indicates a successful completion, control is transferred to the
end of the input-output statement or to the imperative-statement specified in the
NOT INVALID KEY phrase if it is specified. In the latter case, execution
continues according to the rules for each statement specified in that imperative-
statement. If a procedure branching or conditional statement that causes explicit
transfer of control is executed, control is transferred in accordance with the rules
for that statement; otherwise, upon completion of the execution of the



imperative-statement specified in the NOT INVALID KEY phrase, control is
transferred to the end of the input-output statement.

At end condition

The at end condition may occur as a result of the execution of a READ statement or
a RETURN statement.

RETRY phrase

The RETRY phrase is specified in an input-output statement to indicate whether the
MSCS should continue to attempt to obtain access in the event that a file or record
is locked.

General format
{TIMEOUT RETRY arithmetic-expression-1 TIMES} |

{TIMEOUT RETRY {(NO LIMIT TIMES)|{ FOREVER}}|
{TIMEOUT AFTER arithmetic-expression-2 SECONDS}

General rules

1. Arithmetic-expression-1 specifies the number of times after the initial failure that
the MSCS shall attempt to gain access to the locked resource and complete the
requested input-output operation. There is a 500ms delay between client
attempts. The value of arithmetic-expression-1 shall be a positive integer. If the
NO LIMIT phrase is specified, these attempts shall continue until the input-output
operation has been completed.

2. Arithmetic-expression-2 specifies the number of seconds in the timeout period.
The I-O statement behaves as though the length of the timeout period were
stored in a temporary data item whose picture is 9(n)V9(m), in the manner
specified by this rule. The temporary data item is treated as double-precision
floating-point so any valid COBOL number is permissible. There is no set
maximum time limit. Arithmetic-expression-2 is used as the sending item and
the temporary data item as the receiving item in a COMPUTE statement without
the ROUNDED phrase. During the timeout period, the MSCS shall attempt to
gain access to the locked resource and complete the requested input-output
operation. There is a 500ms delay between client attempts.

3. If the I/O operation is unsuccessful on the first attempt because of a file sharing
conflict condition or a record operation conflict condition, the following apply:

a. Ifthe RETRY phrase is not specified or the result of the evaluation of
arithmetic-expression-1 or arithmetic-expression-2 is negative or zero, the
statement is unsuccessful and a value is placed into the I-O status
associated with the file connector to indicate a file sharing conflict condition
or a record operation conflict condition; otherwise,

b. The MSCS attempts to complete the input-output operation as specified in
general rules.



If the MSCS permits the requested access on one of these attempts, the statement
is successful and the results are as if the file sharing or record operation conflict had
never occurred.

Otherwise, the statement is unsuccessful and a value is placed into the I-O status
associated with the file connector to indicate a file sharing conflict condition or a
record operation conflict condition. If there is an applicable declarative, it is
executed. This may cause its own transfer of control; otherwise, execution
continues with the statement following the input-output statement.

Sharing mode

The sharing mode indicates whether a file is to participate in file sharing and record
locking, and specifies the degree of file sharing (or non-sharing) to be permitted for
the file. The sharing mode specifies the types of operations that may be performed
on the shared file through other file connectors throughout the duration of this
OPEN.

The SHARING phrase on an OPEN statement overrides the SHARING clause in the
file control entry for establishing the sharing mode. |If there is no SHARING phrase
on the OPEN statement, the sharing mode is completely determined by the
SHARING clause in the file control entry. If no specification is made in either
location, no explicit sharing occurs; the operating systems rules preempt. The rules
are the same for a given sharing mode regardless of whether the sharing mode is
specified on the open statement or specified in the file control paragraph.

Other facilities, such as a job control language or another programming language,
may specify some degree of file sharing, however, if COBOL syntax is used to
specify file sharing, file sharing is done as defined herein.

NOTE - Java does not normally possess record locking, so custom Elastic COBOL
methods are used to implement the file sharing and record locking. The methods
used for file sharing are documented below. The methods used for record locking
are beyond the scope of this document.

A shared file shall reside on a device that allows concurrent access to the file. The
device and permissions must support file renaming.

File sharing is done by means of file renaming. A file in the ‘base state’ (having the
same name specified in its ASSIGN) is an inactive file, or one for which no file
sharing semantics had been specified leaving its control to the operating system.

When an attempt to open a file occurs, it attempts to rename the file with a specific
prefix depending on the sharing mode:

“no_" for NO OTHERS,

“aoi_" for ALL OTHERS opened initially for INPUT,

“aoo_" for ALL OTHERS opened initially for other than INPUT,
“roi_" for READ ONLY opened initially for INPUT,

“roo_" for READ ONLY opened initially for other than INPUT.

If the file renaming cannot occur, then it attempts only to open those file prefixes
which are valid for its sharing condition. The file renaming is automatically undone



upon normal closure of the file. If a program abnormally terminates, files may be
unintentionally left in the shared state; they may be renamed to remove the prefix to
move them back to the inactive unshared state.

Note that the EXCLUSIVE and UN-EXCLUSIVE verbs use the record server to
achieve file sharing instead of the above renaming scheme due to the EXCLUSIVE
and UN-EXCLUSIVE verbs working after the file is opened instead of at the time of
opening.

Before access to a shared file is allowed through an OPEN statement, the sharing
mode and the open mode shall be allowed by all other file connectors that are
currently associated with the file. Additionally, the sharing mode for the current
OPEN statement shall permit all of the sharing modes and open modes that exist for
all other file connectors that are currently associated with the file. (See I-O status;
OPEN statement; and table Opening available shared files that are currently open
by another file connector.)

The sharing mode controls access to a file as follows:

1. The sharing with no other mode specifies exclusive access to a file. Associating
this file connector with the file will be unsuccessful if the file is currently open
through other file connectors. If the OPEN statement is successful, subsequent
requests to open the file through other file connectors before this file connector
is closed will be unsuccessful. Record locks are ignored.

2. The sharing with read only mode restricts concurrent access to a file through file
connectors other than this one, to input mode. Associating this file connector
with the file will be unsuccessful if the file is currently open in a mode other than
input. If the OPEN statement is successful, subsequent requests to open the file
through other file connectors in a mode other than input before this file
connector is closed will be unsuccessful. Record locks are in effect.

3. The sharing with all other mode allows concurrent access to a file through other
file connectors specifying input, I-O, or extend mode, subject to any further
restrictions that apply. Record locks are in effect.

Multiple paths of access may exist concurrently for a shared file whether they exist
in the same program, contained programs, separately compiled programs within the
same run unit, or separately compiled programs in different run units. Do not open
the same file connector from the same run unit.

The setting of a file lock is part of the atomic operation of an I-O statement.

The file lock and all record locks established for a file connector are removed by an
explicit or implicit CLOSE statement executed for that file connector.

Sort/Merge Files

Sort file

A sort file is a collection of records to be sorted by a SORT statement. The rules for
blocking and for allocation of internal storage are peculiar to the SORT statement.
The RELEASE and RETURN statements imply nothing with respect to buffer areas,



blocks, or reels. A sort file, then, may be considered as an internal file that is
created (RELEASE statement) from the input file, processed (SORT statement), and
then made available (RETURN statement) to the output file.

A sort file is named by a file control entry and is described by a sort-merge file
description entry. A sort file is referred to by the RELEASE, RETURN, and SORT
statements.

Sort files are automatically removed upon completion of the sort.
Merge file

A merge file is a collection of records to be merged by a MERGE statement. The
merge file has no label procedures that the programmer may control and the rules
for blocking and for allocation of internal storage are peculiar to the MERGE
statement. The RETURN statement implies nothing with respect to buffer areas,
blocks, or reels. A merge file, then, may be considered as an internal file that is
created from input files by combining them (MERGE statement) as the file is made
available (RETURN statement) to the output file.

A merge file is named by a file control entry and is described by a sort-merge file
description entry. A merge file is referred to by the RETURN and MERGE
statements.

Merge files are automatically removed upon completion of the merge.

Screens

Terminal screen

A terminal provides I-O via a screen, which is a rectangular array of displayable
character locations, and a keyboard.

A screen contains one or more fields during each input or output operation. A field
may range in size from one character to the maximum number of characters
permitted on the screen. Each field represents an elementary screen item. One or
more fields may be logically grouped together into a group screen item; such fields
need not be contiguous. A group screen item may contain other group screen items.
The fields within a group screen item are ordered for the purposes of determining
the next field and the previous field operations during terminal input. The order of
fields is determined by the order of declaration of screen items in a screen
description entry.

A screen has visible attributes associated with each display location.

The Elastic COBOL CONSOLE device must be used for full screen operations. On
graphical systems, the CONSOLE is graphical in nature; on text systems, the text
terminal is used. The graphical CONSOLE defaults to 80 columns by 25 lines. The
SYSOUT and SYSIN devices may not be used for full screen control.



Elastic COBOL allows both text and graphics on the CONSOLE device. Because of
this, any graphical elements at the same location as text elements obscure text
elements.

A default CONSOLE will be created upon first use. The attributes of the CONSOLE
may be explicitly controlled by program code if the first DISPLAY is a DISPLAY
STANDARD|GRAPHICAL WINDOW.

The default ACCEPT/DISPLAY device is CONSOLE unless, for example “DISPLAY
xxx UPON SYSOUT” is specified on the statement. To change this
ACCEPT/DISPLAY default to SYSIN/SYSOUT (standard input, standard output) use
the Elastic COBOL compiler option -run:system.

CRT status

The CRT status is a three-character conceptual entity whose value is set to indicate
the status of a terminal input-output operation during the execution of an ACCEPT
screen statement and prior to the execution of any imperative statement associated
with any ON EXCEPTION or NOT ON EXCEPTION clauses for that ACCEPT
statement. The value of the CRT status is made available to the COBOL program
through the use of the CRT status clause in the SPECIAL-NAMES paragraph. The
third character is currently unused.

The CRT status follows the X/Open usage.

CRT status expresses one of the following conditions upon completion of the input
operation:

1. Successful completion with normal termination. The input statement was
successfully executed.

2. Successful completion with termination by a function key keystroke. The input
statement was successfully executed.

3. Unsuccessful completion. The input statement was not successfully executed.
Further terminal I-O statements are not precluded.

The following is a list of the values placed in the CRT status for the conditions
resulting from the execution of an input operation.

1. The first character of the CRT Status data item is CRTKEY1, and the second
character of the CRT Status data item is CRTKEY2.

2. If CRTKEY1 is ‘0, then the input was terminated. If CRTKEY2 is ‘0’ then a
terminator was pressed, if CRTKEY?2 is ‘1’ then the user auto skipped out of the
last field.

3. IfCRTKEY1 is ‘1, then a user defined function key was pressed. CRTKEY2 is a
single byte character holding the binary number of the function key.

4. If CRTKEYL1lis ‘2, then a system defined function key was pressed. CRTKEY?2
is a single byte character holding the binary number of the function key.

5. If CRTKEY1 is ‘9, then no items fell within the screen.



Cursor

Cursor

Character addressable terminals use the concept of a cursor to indicate the position
on the screen at which keyboard operations will be displayed. This is generally
indicated by the position of a visible cursor symbol.

During execution of a DISPLAY screen statement, the position and visibility of the
cursor is undefined.

During execution of an ACCEPT screen statement, the position and visibility of the
cursor is undefined except during the period that the keyboard is synchronously
enabled for operator input. The cursor shall be visible during this period and shall
indicate the position on the screen at which keyboard input will be displayed.

During execution of an ACCEPT screen statement, the cursor is initially positioned
at the first elementary screen item in the screen description entry whose
specification includes a TO or USING phrase, unless the CURSOR clause is
specified in the SPECIAL-NAMES paragraph, in which case the cursor is positioned
as specified in that clause.

Once the keyboard is enabled for operator input, the operator may use cursor
positioning keys to move between elementary screen items whose specification
includes a TO or USING clause. Depending on the screen description entry for the
item, the operator may move the cursor between characters within the displayed
item.

Left and Right cursor keys maneuver within the fields. Tab and Down cursor
advance a field. Shift-Tab and Up go back a field. Home moves to the beginning of
a field. End moves to the end of a field. Control-Home goes to the top field.
Control-End goes to the bottom field.

On the GUI Console, a popup menu is available by right-clicking. The popup menu
offers the ability to change the font size, columns and lines, background and
foreground colors, and in Java 2 the ability to print the GUI Console.

On international systems in Java 2, input methods may be activated in the GUI

Console to allow input of complex characters not readily handled by the standard
keyboard. These may be assigned to national data items only; assigning national
data to standard alphanumeric results in the truncation of each national character.

locator

The cursor locator is a four- or six-character conceptual entity whose value is set by
the program to indicate the position of the visible cursor on the display screen when
the keyboard becomes synchronously enabled during execution of an ACCEPT
screen statement. The position is relative to the top left corner of the screen.

Upon successful termination of execution of an ACCEPT screen statement, the
cursor locator is set to indicate the position of the visible cursor at the time the
operator presses the terminator key or a function key. If the execution of the
ACCEPT statement was unsuccessful, the value of the cursor locator is undefined.

The locator is split in half; for a four-character in two and two, for a six-character in
three and three. The cursor locator is made available to the program through the



use of the CURSOR clause in the SPECIAL-NAMES paragraph. The first half
represents a number giving the line number, the topmost line being 01 or 001. The
second half represents a number giving the column number, the first column number
being 01 or 001. If the position of the visible cursor is at a line or column number
that is greater than 999, the value of the cursor locator is undefined.

Current screen item

During the execution of an ACCEPT statement, one or more elementary input
screen items may be displayed on the terminal display. The operator is able to
move the cursor between the screen items using context-dependent cursor
positioning keys. The cursor may also move automatically from one screen item to
another when the screen item becomes full or the last character in the screen item is
keyed. The screen item in which the cursor is located is the current screen item.
Any data keyed by the operator will be attributed to the current screen item and may
cause the display of the current screen item to change. While a screen item is the
current screen item, the display on the screen will not necessarily conform to the
PICTURE clause of that item, but it will conform once the screen item is no longer
current.

Color number

Color is one of the attributes that may be specified for screen items. For a
monochrome terminal, the color attributes are mapped onto other attributes by Java
and the operating system.

The colors available to a program are as in the following table. A color is selected
by specifying the corresponding integer that represents the color number. The
colors given in the table are a rough guide only, the exact shade of color will depend
on the terminal capabilities. For example the value 6 might be shown as brown, but
when HIGHLIGHT is also selected it might appear as yellow or the value 0 might be
shown as black but when HIGHLIGHT is also selected it might appear as gray.

ScreenColor Numbers

Black

Blue

Green

Cyan

Red

Magenta

Brown or Yellow
White

In Elastic COBOL, the color names may be used after the keywords
FOREGROUND-COLOR and BACKGROUND-COLOR instead of the color number.
Additionally, bright- or light- may be appended to the front of the name to use the
brighter color, or dim- or dark- may be appended to the front of the name to use the
darker color. The color names are not reserved words.

~N| OO |WIN|F|O




Keystroke Variable

The KEYSTROKE variable defines keyboard control. The KEYSTROKE
configuration variable may be set to text describing keyboard control. Each
KEYSTROKE setting is additive to settings prior. The KEYSTROKE may be set
outside of the program, as a program variable or in a configuration file, or it may be
set in the program using SET CONFIGURATION "KEYSTROKE" TO value.

The KEYSTROKE has several commands that may be done when setting
KEYSTROKE.

AT-END=value
DATA=value

EDIT=value
EXCEPTION=value
HOT-KEY=program-name
INVALID=value
TERMINATE=value

The format of the KEYSTROKE string is 'KEYSTROKE command... key-code'. The
key-code is a code from the following list. Where applicable, the corresponding
Java VK key code name is given.

Keystroke Variables

Key-Code Meaning Java VK Code

/B Backspace VK BACK SPACE;
M Enter VK ENTER

NA-NZ Control A-Z Codes 1..26

k1 F1 VK F1

k2 F2 VK F2

k3 F3 VK F3

k4 F4 VK _F4

k5 F5 VK _F5

k6 F6 VK F6

k7 F7 VK F7

k8 F8 VK F8

k9 F9 VK F9

kO F10 VK _F10

k10 F10 VK _F10

k11 F11 VK F11

k12 F12 VK F12

kd Cursor Down VK DOWN

kh Home VK HOME

ki Cursor Left VK LEFT

ku Cursor Up VK_UP

kA Insert Line VK |+ ALT MASK
kB Shift Tab VK TAB + SHIFT MASK
kE Clear to End VK END + CTRL MASK
kL Delete Line VK K+ ALT MASK
kN Page Down VK_PAGE_DOWN
kP VK PAGE UP




Key-Code Meaning Java VK Code

K1 VK_F1 + SHIFT_MASK
K2 VK_F2 + SHIFT_MASK
K3 VK_F3 + SHIFT_MASK
K4 VK _F4 + SHIFT_MASK
K5 VK_F5 + SHIFT_MASK
K6 VK_F6 + SHIFT_MASK
K7 VK_F7 + SHIFT_MASK
K8 VK _F8 + SHIFT_MASK
K9 VK _F9 + SHIFT_MASK
KO VK_F10 + SHIFT_MASK
K10 VK_F10 + SHIFT_MASK
K11 VK _F11 + SHIFT_MASK
K12 VK _F12 + SHIFT_MASK
Kc Cancel VK X +ALT_MASK

Kd Next Paragraph VK_DOWN + CTRL_MASK
Kl Word Left VK_LEFT + CTRL_MASK
Kr Word Right VK_RIGHT + CTRL_MASK
Ku Prev. Paragraph VK_UP + CTRL_MASK
Kx Exit VK_E + ALT_MASK

KA Attention VK_A + ALT_MASK

KB Bottom VK_PAGE_DOWN + CTRL_MASK
KC Clear VK_HOME + CTRL_MASK
KD Command(Do) VK _D + ALT_MASK

KE End VK_END

KF Find VK_F + ALT_MASK

Kl Insert Char. VK_INSERT

KL Page Left VK L +ALT_MASK

KM Mark VK_M +ALT MASK

KP Print VK_P +ALT _MASK

KR Page Right VK_R + ALT_MASK

KS Send VK_S + ALT_MASK

KT Top VK_UP + CTRL_MASK
KV Save VK_V +ALT _MASK

KX Delete VK_DELETE

K? Help VK_H +ALT_MASK

Ul User/Alt F1 VK _F1 +ALT _MASK

U2 User/Alt F2 VK _F2 + ALT _MASK

us User/Alt F3 VK _F3 + ALT _MASK

U4 User/Alt F4 VK F4 + ALT MASK

us User/Alt F5 VK_F5 + ALT _MASK

U6 User/Alt F6 VK _F6 + ALT _MASK

u7 User/Alt F7 VK_F7 + ALT_MASK

us User/Alt F8 VK_F8 + ALT _MASK

U9 User/Alt F9 VK_F9 + ALT_MASK

uo User/Alt F10 VK_F10 + ALT_MASK
uU10 User/Alt F10 VK _F10 + ALT_MASK
Ull User/Alt F11 VK _F11 + ALT_MASK
Uiz User/Alt F12 VK_F12 + ALT_MASK
Al Altl VK_1+ALT_MASK

A2 Alt 2 VK 2 + ALT_MASK

A3 Alt 3 VK 3 +ALT_MASK

A4 Alt4 VK 4 +ALT _MASK

A5 Alt 5 VK 5+ ALT _MASK

A6 Alt 6 VK 6 + ALT_MASK

A7 Alt 7 VK _7 + ALT_MASK

A8 Alt 8 VK 8 + ALT _MASK

A9 Alt 9 VK 9 +ALT MASK

A0 Alt 0 VK_0 + ALT_MASK




Key-Code Meaning Java VK Code

A- Alt - VK_SUBTRACT + ALT_MASK
A= Alt = VK_EQUALS +ALT _MASK
C1 Control F1 VK_F1 + CTRL_MASK

Cc2 Control F2 VK_F2 + CTRL_MASK

C3 Control F3 VK_F3 + CTRL_MASK

C4 Control F4 VK_F4 + CTRL_MASK

C5 Control F5 VK_F5 + CTRL_MASK

C6 Control F6 VK_F6 + CTRL_MASK

Cc7 Control F7 VK_F7 + CTRL_MASK

C8 Control F8 VK_F8 + CTRL_MASK

Cc9 Control F9 VK_F9 + CTRL_MASK

co Control F10 VK_F10 + CTRL_MASK
C10 Control F10 VK_F10 + CTRL_MASK
Cl1 Control F11 VK _F11 + CTRL_MASK
Cl2 Control F12 VK _F12 + CTRL_MASK
Num. ASCII keycode ASCII keycode

AT-END

If value starts with "Y', 'y', 'T', 't', or '1' then the keycode becomes a termination

keycode which also causes the AT END condition.

DATA

Assign special characters to the keycode.

EDIT

Assign a command value to the keycode from the following list:

Auto-Insert
Backspace
Default-Entry
Default-Next
Delete

Down

End
Erase-All
Erase-EOS
Erase Field
Erase-Next

Erase-to-End

First Page-Down
Home Page-Up
Insert-Off Previous
Insert-On Previous-All

Insert-Space

Last
Menu
Next
Next-All

Previous-Line
Right
Switch-Window
System-Menu
Toggle-Edit-Mode

Next-Line
Numeric-Default

Numeric-Next

Toggle-Insert
Up



EXCEPTION

EXCEPTION creates an exception key. EXCEPTION makes the keycode terminate
with the given integer exception value. TERMINATE and EXCEPTION is very
similar in usage in Elastic COBOL .

HOT-KEY

HOT-KEY assigns an implicit action to the keycode, telling it to run the given
program-name. The HOT-KEY command is currently ignored.

INVALID

If value starts with "Y', 'y, 'T", 't', or '1' then the keycode is ignored when typed. If
value starts with 'N', 'n’, 'F', 'f', or '0' then the ignore is disabled.

TERMINATE

TERMINATE creates a termination key. TERMINATE makes the keycode terminate
with the given integer termination value. TERMINATE and EXCEPTION is very
similar in usage in Elastic COBOL.

SCREEN CONTROL

SCREEN CONTROL specifies a group identifier to be the screen control allowing an
embedded procedure to control its containing ACCEPT statement.

Input fields in the screen section item being accepted are given sequentially ordered
field numbers starting at one.

During an ACCEPT, if there is an embedded procedure, then ACCEPT-REASON is
set to the reason for entry; this is 1 for notify event, O otherwise. ACCEPT-HANDLE
is set to the handle of control for which the embedded procedure is executing; this is
0 for a non-graphical or textual control. ACCEPT-FIELD-NUMBER is set to the input
field number of the control. ACCEPT-ID is set to the control's ID number if
graphical, O if textual.

The SCREEN CONTROL group item is defined below. Any user SCREEN
CONTROL item must follow this record format.

01 SCREEN-CONTROL-ITEM.
05 ACCEPT-REASON-FOR-ENTRY PIC 9.
05 ACCEPT-FIELD-NUMBER PIC 999.
05 ACCEPT-HANDLE USAGE HANDLE.
05 ACCEPT-ID PIC X(2) COMP-X.

When the ACCEPT terminates, ACCEPT-HANDLE is set to 0 and ACCEPT-FIELD-
NUMBER contains the field number last containing the cursor.



During an embedded procedure, the ACCEPT-REASON may be set to alter the
behavior of the remainder of the ACCEPT. The following settings are meaningful
after the termination of the embedded procedure:

0 ACCEPT continues normally

1 ACCEPT continues from field ACCEPT-FIELD-NUMBER

If ACCEPT-HANDLE is 0, then ACCEPT remains in current field.

If ACCEPT-FIELD-NUMBER is set to a non-existent field, ACCEPT will terminate.
If ACCEPT-FIELD-NUMBER is set to a read-only field, control passes to
numerically next field number of terminates if there is none.

2 ACCEPT terminates normally, ACCEPT-FIELD-NUMBER is termination value of
ACCEPT
3 ACCEPT terminates with exception, ACCEPT-FIELD-NUMBER is exception value
of ACCEPT.
4 ACCEPT continues with control transferred to graphical control identified by
ACCEPT-ID.
EVENT STATUS

EVENT STATUS specifies an identifier to receive the event status when a graphical
screen section event occurs.

The EVENT STATUS group item is defined as follows:

01 EVENT-STATUS.
05 EVENT-TYPE PIC X(4) COMP-X.
05 EVENT-WINDOW-HANDLE USAGE HANDLE OF WINDOW.
05 EVENT-HANDLE USAGE HANDLE.
05 EVENT-ID PIC X(2) COMP-X.
05 EVENT-DATA-1 PIC SX(2) COMP-X.
05 EVENT-DATA-2 PIC SX(4) COMP-X.
05 EVENT-ACTION PIC X COMP-X.

The EVENT-TYPE is identifies the type of the EVENT.

The EVENT-WINDOW-HANDLE holds the window of the control causing the event.
The EVENT-HANDLE holds the handle of the control that caused the event.

The EVENT-ID holds the ID of the control that caused the event.

The EVENT-DATA-1 holds event-specific information; see the specific event for
more information.

The EVENT-DATA-2 holds event-specific information; see the specific event for
more information.

The EVENT-ACTION holds the action that the event handler should perform upon
termination of the event procedure. This value is from the following list:

0 EVENT-ACTION-NORMAL Event processed normally, terminating only for
terminating events.

1 EVENT-ACTION- Event processed normally, and then always

TERMINATE terminated.

2 EVENT-ACTION-CONTINUE | Event processed normally, and then always not
terminated.

3 EVENT-ACTION-IGNORE Event not processed further, not terminated.

4 EVENT-ACTION-FAIL Specific setting for some events; event will indicate if
this is used.

5 EVENT-ACTION-FAIL- Fail and terminate.




| | TERMINATE

CURSOR

CURSOR specifies an identifier to control the cursor, where the identifier is 4 or 6
characters in length representing rrcc or rrrccc for row and column.

The CURSOR clause, if used, specifies the starting point for an ACCEPT.

The CURSOR clause, if used, will hold the final cursor position at the end of the
ACCEPT.

CRT STATUS

CRT STATUS specifies an identifier for general CRT status.

The CRT STATUS identifier may be in one of two forms. The first form, compliant
with X/Open and most COBOL compilers, is a three-character group. The second
form, compliant with AcuCOBOL, is a numeric identifier which holds the termination
or exception keycode upon completion of an ACCEPT.

The first form group has three characters, known as KEY-1, KEY-2 and KEY-3.
KEY-3 holds the termination or exception key upon completion of an ACCEPT, the
same keycode value which would be present if CRT STATUS referenced a numeric
identifier. Below, keycode is X'00' to X'FF', a single digit binary (suitable as PIC X
COMP-X).

CRT Status Table

KEY-1 KEY-2 KEY-3 Meaning

‘0 ‘0’ keycode Termination key

‘0 ‘1 N/A Auto-skip out of last field

‘1 keycode N/A User-defined function/exception key

'2' X'00' N/A Implementation-defined function/exception key
'9' X'00' N/A No acceptable item on screen.

File Assignment and Protocols

An ASSIGN TO in Elastic COBOL assigns to the local file system normally. The
ASSIGN TO filename should be a non-numeric literal such as "myfilename". Any
local filenames are treated as Posix filenames; any file which Posix may address
may be addressed by Elastic COBOL. Note, however, this does not imply that the
data file storage format is compatible with Elastic COBOL. Because ANSI did not
define the binary file storage format of files (especially indexed files), different
vendors have different and incompatible file storage. Elastic COBOL does address
certain other vendors' implementations, discussed below.

For some cross-platform file capability, Elastic COBOL defines a 'literal IS FILE
CHARACTER' clause in the SPECIAL-NAMES paragraph. This allows the implied
directory separator, such as '/' or '\' to be specified, allowing it to be automatically
converted to the real file separator on the execution platform.



Elastic COBOL employs a file protocol method for assignment of files. An ASSIGN
TO with a filename uses the default 'file' protocol which handles files on mass-
storage devices (such as hard drives, CD's, floppies, etc.). All protocols are
specified in the ASSIGN. The ASSIGN may be dynamically assigned to a variable,
in which case the protocols may be STRINGed together dynamically as well.

In addition, Elastic COBOL has certain virtual devices available. This allows certain
virtual devices, such as a TCP/IP socket or system clipboard, to be treated as a file
by Elastic COBOL. This also allows normal files to be remotely accessible, using an
intermediary (such as our remote file handler or NFS) to handle the file access.
Many of these devices are Sequential Stream Devices, meaning that if INPUT-
OUTPUT is allowed, REWRITE is not allowed (returning a not seekable 1-O status),
and data written is not necessary data which may be read; the semantics of the
READ and WRITE are defined naturally for the device. Sequential Stream Devices
may only be opened as Sequential Organization.

Also, Elastic COBOL supports multiple file formats for the sequential, relative, and
indexed file types. As the binary storage format of these files is not defined by ANSI,
different vendors have different flavors of storage. A file protocol may specify that a
file be created and used in a non-standard or vendor-specific format.

Some protocols are additive, allowing other protocols to be added. In such a case,
all file protocols are applied left to right. A file protocol 'remote:mf:filename' would
mean access a remote file and then let the remote access be done in Micro Focus
compatible format; this is because the remote: protocol knows about all the
protocols of Elastic COBOL, and it is told to open 'mf:filename' which it understands.
On the other hand, the NFS protocol knows nothing of Elastic COBOL protocols, so
in 'nfs:filename' the filename must be comprehensible to the NFS filesystem; it could
not be 'nfs:mf:filename’.

Acu:filename AcuCOBOL format file. Sequential, Relative and Indexed. If
using this protocol, it's recommended to compile using -Dca
for AcuCOBOL data compatibility.

Mfu:filename MicroFocus Unix format file. Sequential, Relative and
Indexed. If using this protocol, it's recommended to compile
using -Dcm for Micro Focus data compatibility.

Mfw:filename Micro Focus Windows format file. Sequential, Relative and
Indexed. If using this protocol, it's recommended to compile
using -Dcm for Micro Focus data compatibility.

Mf:filename Micro Focus format file (appropriate to current platform).
Sequential, Relative and Indexed. If using this protocol, it's
recommended to compile using -Dcm for Micro Focus data
compatibility.

Isam:filename ISAM format file. Indexed Only. This is a native indexed file
format which requires a third-party native ISAM compliant
driver such as D-ISAM.

@[host:]filename AcuConnect Indexed Only. Requires AcuConnect be running
on host. If host not specified, defaults to localhost. If running
as an applet, host must be the webserver due to security.
Acon:[host:]filename AcuConnect Indexed Only. Requires AcuConnect be running
on host. If host not specified, defaults to localhost. If running
as an applet, host must be the webserver due to security.
As400:[host:Jfilename AS/400 Indexed Only. Requires IBM's AS/400 Java Toolbox
in classpath (distributed with Elastic COBOL). If host not
specified, defaults to localhost. If running as an applet, host
must be the webserver due to security.




Clipboard:filename

Sequential Stream Only. The system clipboard, this is
suitable for reading and writing textual application data
sharable with other system programs. Filename is not used.

Copy:filename

Synonym for clipboard

Paste:filename

Synonym for clipboard

Console:filename

Graphical Console device referencable as a file. If flename is
not used, this is the master Console. If flename is used, the
named console is referenced; if there is no console by the
given name, a new console is created. This allows multiple
independent textual displays.

File:filename

Synonym for filename, a local mass-storage control file.

Http:url

Sequential Stream Only. The http: URL is used for opening
an HTTP connection, allowing webpages and similarly served
data to be handled directly. HTTP is generally capable of
INPUT or OUTPUT, but not INPUT-OUTPUT. If running as
an applet, host must be the webserver.

Ims:host:port

Sequential Stream Only. Connect to IMS at given TCP/IP
address or host name and given port number. Allows READ
and WRITE IMS data source across TCP/IP. If running as an
applet, host must be the webserver.

Ipcio:filename Sequential Stream Only. Filename is opened as a native
program, and the data pipe to and from the program is used
for READ and WRITE. This device uses the block size clause
if present. Filename is in the form used at the command line.

Mailto:mail- Sequential Stream Only. OUTPUT only. A mail message is

recipient/sender=mail-
sender/host=mail-
host:mail-port

sent to mail-recipient as if sent by mail-sender using the mail
server at mail-host on port mail-port. A mail-server must be
running at the given location. If running as an applet, mail-
host must be the webserver for security reasons.

Nfs:nfs-filename

Network File System. The nfs-filename is passed through to
WebNFS for Java,; the third-party WebNFS plug-in from Sun
Microsystems must be available in the CLASSPATH for this
functionality. It must be a standard NFS filename usable by
the remote NFS server; see the NFS server's documentation
for what constitutes a valid NFS filename for the system.
NFS may fully access Sequential and Relative files. It may
read Indexed files; do not write Indexed files with it as the
protocol does not recognize the indexed file format and
therefore splits and maintenance must be done across the
network instead of on the remote machine. Be aware that
writing data through NFS is more likely to corrupt the data
during a write; no special recovery is available for NFS during
writes across the network. See remote: for more efficient
remote access of indexed files. An NFS server must be
running on the NFS host; this is supplied by the operating
system vendor or third-party. If running as an applet, the NFS
host must be the webserver for security reasons.

Printer:
[FONT=fontname/]
[SIZE=size/]
[COLS=cols/]
[ROWS=rows/]
[ALIGNX=alignx/]
[ALIGNY=aligny/]
[MARGINX=marginx/]
[MARGINY=marginy/]
[BOLD][ITALIC]

Sequential Stream Only. As Java does not support text
printing, this is a virtual printer device which renders text to an
internal graphics display and then prints the graphics display.
This implies that this printer will work for all graphical printers
with a suitable operating system device driver, but that
specific printer control sequences will be rendered as text, not
as control sequences for the printer.

Remote:host:filename[:p
ort]

Remote File System. The filename is passed through to the
remote file system for further handling. As such, any format
protocols (such as 'mf:' or 'acu:’) should be within the
filename. This protocol efficiently handles Sequential,




Relative and Indexed files. The Remote File Server is
provided with Elastic COBOL, and will run on any system for
which Elastic COBOL is licensed; it must be running for the
remote protocol to succeed. Automatic 'safe’ record locking is
automatically provided by the remote file system.

Server:port

Sequential Stream Only. A TCP/IP ServerSocket is created
on the given port. An OPEN on the server socket waits for a
connection. When a connection is received, the file reference
actually refers to a standard Socket, not a Server Socket.
The opened Socket is only valid for one thread. Another
thread may legally try to OPEN the ServerSocket again, thus
giving another standard Socket. This allows each thread to
service a client and makes the ServerSocket concept
meaningful. All operations other than OPEN are actually
performed on the client connected socket. If a socket
connection is broken, it may be detected as an INVALID KEY
condition in a READ/WRITE verb.

Socket:host:port

Sequential Stream Only. A TCP/IP Socket is created on the
given port. If a socket connection is broken, it may be
detected as an INVALID KEY condition in a READ/WRITE
verb.

Ssliteclient: Secure Socket Layer version of socket: using IBM's SSLite.
Ssliteserver: Secure Socket Layer version of server: using IBM's SSLite.
Syserr: Output only. System error, suitable for command-line

redirection. This is the same device used for DISPLAY UPON
SYSERR.

System:filename

System console, suitable for command-line redirection, this is
output for the system console, system terminal, command
prompt, etc. This is the same device used for DISPLAY
UPON SYSOUT, ACCEPT FROM SYSIN.

Sys:filename

Synonym for system

Sysout:filename

Synonym for system

Sysin:filename

Synonym for system

Stdout:filename

Synonym for system

Stdin:filename

Synonym for system

Url:url-filename

Sequential Stream Only. The url-filename is used as a
generalized URL. This allows any URL known to Java to
function. No special checking of the validity of the URL is
done. If running as an applet, any remote host names in the
URL must be the webserver.

Documentbase:filename

Filename treated as http: reference starting at an applet's
document base

Codebase:filename

Filename treated as http: reference starting at an applet's
code base.

Loaddialog:dialog_filena
meftitle_of_dialog/file_filt
er/file_directory

Prompt user with Open dialog; filename given by user is then
used.

Savedialog:dialog_filena
meftitle_of_dialog/file_filt
er/file_directory

Prompt user with Save dialog; filename given by user is then
used.

Ro:filename Treat file as Read Only; filename is processed further.
Wo:filename Treat file as Write Only; filename is processed further.
line:filename The file will be treated as LINE SEQUENTIAL; filename is

processed further.

raw:filename Sequential Only. Where appropriate, file access is processed

as raw data rather than cooked data with header information.
Filename is processed further.

env:environment

The configuration parameter 'environment' is retrieved and
used as the filename for further processing.

<filename

Synonym for ipcio:filename

>filename

Synonym for ipcio:filename




[filename Synonym for ipcio:filename
-p filename Synonym for ipcio:filename
-P filename Synonym for ipcio:filename
-f filename Synonym for filename
-F filename Synonym for filename




9. Compilation group structure

A compilation group is a series of source units. A source unit may contain other
source units and these contained source units may reference some of the resources
of the source units within which they are contained.

Organization

A source unit begins with an identification division and includes any contained
source units.

With the exception of compiler directives, source text manipulation statements, and
end markers, the statements, entries, paragraphs, and sections of a source unit are
grouped into four divisions that are sequenced in the following order:

1. identification division
2. environment division
3. data division

4. procedure division

The beginning of a division in a source unit is indicated by the appropriate division
header. The beginning of the identification division may also be indicated by one of
the paragraph headers permitted in the identification division.

The end of a division in a source unit is indicated by one of the following:
1. The beginning of a succeeding division in that source unit

2. The end marker for that source unit

3. That physical position after which no more source lines occur.

The end of a source unit is indicated by an end marker, if specified, or by the
absence of additional source lines in the compilation group.

A source unit that is directly or indirectly contained within another source unit is
considered in these specifications as a separate source unit that may additionally
reference certain resources defined in the containing source unit.

The object code resulting from compiling a source unit contained within another
source unit is considered in these specifications to be inseparable from the object
code resulting from compiling the containing source unit.

A source element is a source unit excluding any nested source units.

A run time entity is the result of compiling a source element.



COBOL compilation group

General format
{{ program-definition } | class-definition}}...
where program-definition is:
[ {IDENTIFICATION | ID} DIVISION. ]
PROGRAM-ID.
{program-name-1 | literal-1 | program-name-1 AS literal-1} [INHERITS class-literal]
[ 1S [[NOT] COMMON] [[NOT] INITIAL] [[NOT] RESIDENT] PROGRAM].
{PROGRAM-ID|PROGRAM|PROGRAM IDENTIFICATION}.
{program-name-1|literal-1} [AS literal-1][INHERITS literal-2].
{{IS [NOT] COMMON} | {IS [NOT] RESIDENT} | {IS [NOT] INITIAL}|
{IS [NOT] EXTERNAL} | {IS [NOT] RECURSIVE} | {IS [NOT] FINAL}|
{IS [NOT] PUBLIC} | {IS PRIVATE} | {IS PROTECTED} | {IS PACKAGE}} PROGRAM

[IMPLEMENTS literal-3...]
[environment-division]

[data-division]

[procedure-division [program-definition] ... ]
[END PROGRAM program-name-1 | literal-1. ]

Where class-definition is:
[ {IDENTIFICATION | ID} DIVISION. ]
CLASS-ID.
{program-name-1 | literal-1 | program-name-1 AS literal-1} [INHERITS class-literal]
[ 1S [[NOT] COMMON] [[NOT] INITIAL] [[NOT] RESIDENT] PROGRAM].
{PROGRAM-ID|PROGRAM|PROGRAM IDENTIFICATION}.
{program-name-1|literal-1} [AS literal-1][INHERITS literal-2].
{{1S [NOT] COMMON} | {IS [NOT] RESIDENT} | {IS [NOT] INITIAL}|
{IS [NOT] EXTERNAL} | {IS [NOT] RECURSIVE} | {IS [NOT] FINAL}|
{IS [NOT] PUBLIC} | {IS PRIVATE} | {IS PROTECTED} | {IS PACKAGE}} PROGRAM

[IMPLEMENTS literal-3...]

[environment-division]

[data-division]

[procedure-division [program-definition] ... ]
[method-definition]...

END CLASS program-name-1 | literal-1

where method-definition is:
[ {IDENTIFICATION | ID} DIVISION. ]
METHOD-ID.
{program-name-1 | literal-1 [METHOD OVERRIDE]




{IS [NOT] COMMON} through {IS PACKAGE} PROGRAM from above
[environment-division]

[data-division]

[procedure-division]

END METHOD program-name-1 | literal-1.

[END PROGRAM program-name-1 | literal-1. ]

Syntax rules

1.

10.

11.

12.
13.

14.
15.

16.

17.

18.

There are three types of COBOL source units: PROGRAM, CLASS and
METHOD.

CLASS units must contain only METHOD units.
METHOD units must be contained by CLASS units.

METHOD OVERRIDE indicates that the method definition overrides a definition
in a superclass; this is only commentary.

CLASS units INHERIT (also known as extend) a superclass (also known as a
parent or base class).

In Elastic COBOL all CLASS units, even those without an INHERITS clause,
eventually inherit from java.lang.Object.

In Elastic COBOL, PROGRAM units are implicitly Java Class objects.
PROGRAM is the traditional COBOL source unit.

CLASS units may be instantiated (created) by either Elastic COBOL programs or
by Java programs.

All top-level source unites names are produced in lowercase with dashes (-)
converted to underscores( ) if not specified as a literal.

An end marker shall be present in every source unit that contains, is contained
in, or precedes another source unit.

If program-name-1 and literal-1 are specified, literal-1 is the name used.

Class-literal is the literal name of a class, e.qg., “java.applet.Applet”. This is
optional and should not be changed unless the program should inherit from
other than the default, “java.applet.Applet”. A repository classname may not be
specified here.

The RESIDENT clause disables the CANCEL verb'’s effects on this program.

Program-name-1 shall be identical to the program-name declared in a preceding
PROGRAM-ID paragraph.

If a PROGRAM-ID paragraph declaring a specific program-name is stated
between the PROGRAM-ID paragraph and the END PROGRAM header for
program-name-1, then an END PROGRAM header referencing program-name
shall precede the END PROGRAM header referencing program-name-1.

COMMON on a nested PROGRAM source unites indicates that the program
many be called by other programs.

INITIAL indicates that the program's state should be reinitialized with each
CALL.



19.

20.
21.

22.

23.

RECURSIVE indicates that a program may CALL itself. This is treated as
commentary because all Elastic COBOL program may be called recursively.

FINAL indicates that this unit may not be inherited or overridden.

PUBLIC indicates that any program may CALL or INVOKE this program. This is
the default.

PRIVATE or NOT PUBLIC indicates that only programs in the overall source unit
may CALL or INVOKE this program. If a METHOD, only other METHODsSs in the
same CLASS may invoke it.

PROTECTED indicates that only programs in this overall source unit or in source
units extending this source unit may CALL or INVOKE this program.

End markers

End markers indicate the end of a definition.

General format

END PROGRAM {program-name-1 | literal-1}.

General rules

1.
2.

An end marker indicates the end of the specified source unit.

If the source unit terminated by the end marker is contained within another
source unit, the next statement shall be either the first statement of a source unit
or another end marker that terminates the containing source unit.

If the program terminated by an end marker is not contained within another
source unit, the next statement shall be the first statement of a source unit to be
compiled separately from the source unit terminated by the end marker.

External repository

The external repository stores information specified in program definitions and class
definitions.

The information stored about these source units must consist of all information
required for activation and checking conformance. This information includes

o the externalized name of the source unit

o the type of the source unit - program, function, class, or interface

o the parameters of the source unit, if any

o the returning item of the source unit, if any

o the call convention of the source unit, if any

o the object properties of the source unit, if any

° the methods contained in the source unit, if any, and details about the

method's externalized name, parameters, returning item, and call convention



o type declarations required for the description of parameters and returning

items

o whether the DECIMAL-POINT IS COMMA clause is specified in the
source unit;

o whether the CURRENCY clause is specified in the source unit; This

information about a source unit, excluding the externalized name of the source
unit, is called its signature.

The details on the association of the name of a source unit with information in the
external repository are specified in REPOSITORY paragraph.

Program organization and communication

A compilation group may contain zero, one, or more source units. A source unit may
contain other source units, and these contained source units may reference some of
the resources of the source unit in which they are contained. (See COBOL
compilation group, for full details of the structure.)

When a source unit, B, is contained in another source unit, A, it may be directly or
indirectly contained. Source unit B is directly contained in source unit A if there is
no source unit contained in A that also contains B. Source unit B is indirectly
contained in source unit A if there exists a source unit contained in A that also
contains B.

Objects and classes

An object is a single entity consisting of data and methods. An object belongs to a
class. A class describes the structure of the data and the methods that apply to all
the objects belonging to that class. A class has any number of constructors that are
used to construct the object from the class. Elastic COBOL classes automatically
include a default constructor.

Object references

An object reference is a value that uniquely identifies an object for the lifetime of the
object. No two distinct objects have the same object reference and every object has
at least one object reference.

It is permitted to have more than one object reference for any given object provided
the requirements of this standard are fully met, but it is sufficient that a given object
has precisely one object reference.

In Elastic COBOL, object references are outside the scope of traditional COBOL
memory. In all COBOL implementations with object references, the references are
transitory and invalid beyond the specific run. Object references in Elastic COBOL
are direct Java object references and as such possess all the capabilities and
restrictions inherent in Java objects, including visibility of methods, security, etc. An
object is garbage collected at any point after there are no longer any references to it.
No explicit free is required.



Methods

The procedural code in an object is placed in methods. Each method has its own
method-name and its own data division and procedure division. When a method is
invoked, the procedural code it contains is executed. A method is invoked by
specifying an identifier that references the object and the name of the method. A
method may specify parameters and a returning item.

File connector

Afile connector is a storage area that contains information about a file and is used
as the linkage between a file-name and a physical file. A file connector is either
internal or external as described in External and internal items.

A file connector is placed in an open mode by the execution of a successful OPEN
statement that references the associated file-name. The OPEN statement also
associates the file connector with a physical file. When a CLOSE statement
references the associated file-name, the file connector is no longer associated with
the physical file and the file connector is no longer in an open mode. In the following
cases, the COBOL runtime system executes an implicit CLOSE statement without
any optional phrases for a file connector that is in the open mode:

. When the run unit terminates.

o For initial file connectors described in a program when a GOBACK or an
EXIT PROGRAM statement is executed in a called program in which they are
described.

o For file connectors in the program to which a CANCEL statement is
executed or in any program contained in that program.

o For file connectors in an object when the object is deleted.

Global names and local names

A global name may be used to refer to the item with which it is associated either
from within the source element in which the global name is declared or from within
any other source element that is contained in the source element that declares the
global name.

A local name, however, may be used only to refer to the item with which it is
associated from within the source element in which the local name is declared.
Some names are always global; other names are always local; and some other
names are either local or global depending upon specifications in the source
element in which the names are declared.

A file-name, record-name, or report-name described using a GLOBAL clause is a
global name. All data-names subordinate to a global name are global names. All
condition-names associated with a global name are global names.

However, specific rules sometimes prohibit specification of the GLOBAL clause for
certain file description, record description, or report description entries.



A data-name or file-name declared in a source element for an object definition or a
factory definition is global.

Global names are transitive across source elements contained within other source
elements.

External and internal items

Accessible data items usually require that certain representations of data be stored.
File connectors usually require that certain information concerning files be stored.
The storage associated with a data item or a file connector may be external or
internal to the program in which it is declared.

A data item or file connector is external if the storage associated with that item is
associated with the run unit rather than with any particular program within the run
unit. An external item may be referenced by any program in the run unit that
describes it. References to external items from different programs using separate
descriptions of the data item or file connector are always references to the same
item. In a run unit, there is only one representation of an external item.

A data item or file connector is internal if the storage associated with it is associated
only with the program that describes it.

External and internal data items and file connectors may have either global or local
names.

A data record described in the working-storage section is given the external attribute
by the presence of the EXTERNAL clause in its data description entry. Any data
item described by a data description entry subordinate to an entry describing an
external record also attains the external attribute. If a record or data item does not
have the external attribute, it is part of the internal data of the program in which it is
described.

A file connector is given the external attribute by the presence of the EXTERNAL
clause in the associated file description entry. If the file connector does not have the
external attribute, it is internal to the program in which the associated file-name is
described.

The data records described subordinate to a file description entry that does not
contain the EXTERNAL clause or a sort-merge file description entry, as well as any
data items described subordinate to the data description entries for such records,
are always internal to the program describing the file-name. If the EXTERNAL
clause is included in the file description entry, the data records and the data items
attain the external attribute.

Data records, subordinate data items, and various associated control information
described in the communication, linkage, local-storage, and report sections of a
program are always considered to be internal to the program describing that data.
Special considerations apply to data described in the linkage section whereby an
association is made between the data records described and other data items
accessible to other programs.



Automatic, initial, and static items

There are three kinds of internal data items and file connectors: automatic, initial,
and static. The designation of automatic, initial, and static items relates to their
persistence and the persistence of their contents during the execution of a run unit.

Data items and file connectors have an initial and last-used state. The initial state of
a data item depends on the presence or absence of a VALUE clause in its data
description entry. If a VALUE clause is present, when a data item defined in the
working-storage or local-storage section of a program is set to its initial state, it is set
to the associated value. If a data item is defined in any other section or its data
description entry does not include a VALUE clause, its content is undefined when it
is set to its initial state. The initial state of a file connector is that it is not in an open
mode.

Elastic COBOL uses the VALUE clause for initial definition regardless of section.

Last-used state means that the content of the data item or file connector is that of
the last time it was modified.

Automatic items are set to their initial state any time a function, method, or program
is activated, and each instance of the function, method, or program has its own copy
of the item. An automatic item is an item described in the local-storage section

Initial items are set to their initial state any time an initial program is activated. All
data items and file connectors in an initial program are initial items.

Static items are set to their initial state any time a method, or program is set to its
initial state. (See State of a method, object, or program.) A static item is an item
described in the communication section or in the file or working-storage section of a
source unit that is not an initial program.

Common, initial, and resident programs

Programs that form part of a run unit may possess zero, one, or more of the
following attributes: common, initial, and resident.

A common program is one that, despite being directly contained within another
program, may be called by any program directly or indirectly contained in that other
program. The common attribute is attained by specifying the COMMON clause in a
program's identification division. The COMMON clause facilitates the writing of
subprograms that are to be used by all the programs contained within a program.

An initial program is one whose program state is initialized when the program is
called. During the process of initializing an initial program, that program's internal
data is initialized as described in State of a function, method, object, or program.
The initial attribute is attained by specifying the INITIAL clause in the program's
identification division.

A resident program is one upon which the CANCEL verb has no effect; no re-
initialization code is generated for the CANCEL. If the CANCEL verb is not to be
used with the program, RESIDENT programs have a smaller code-size.



Sharing data

Two run time entities in a run unit may reference common data in the following
circumstances:

1. The data content of an external data record may be referenced from any run
time entity provided that run time entity has described that data record.

2. If aprogram is contained within another program, both programs may refer to
data possessing the global attribute either in the containing program or in any
program that directly or indirectly contains the containing program.

3. The mechanism whereby an argument value is passed by reference from an
activating run time entity to an activated run time entity establishes a common
data item. The activated entity and the activating entity may use a different
name to refer to the common data item.

Sharing file connectors

Two run time entities in a run unit may reference common file connectors in the
following circumstances:

1. An external file connector may be referenced from any run time entity that
describes that file connector.

2. If a program is contained within another program, both programs may refer to a
common file connector by referring to an associated global file-name either in
the containing program or in any program that directly or indirectly contains the
containing program.

Method invocation

The procedural code in a method is executed by invoking the method with an
INVOKE statement. The method implementation that is bound to the invocation
depends on the class, at run time, of the object on which the method is invoked. In
particular, it is not the class specified statically on the definition of the object
reference identifier, it is the class of the object that is referenced at run time that is
used in resolving a method invocation to a particular method implementation.

If SUPER is specified as the object identifier, then the invocation will resolve using a
restricted search, as specified in SELF and SUPER.

Method resolution proceeds by applying the first one of the following rules that is
applicable:

1. If a method with the method-name specified in the invocation is defined in the
class of the object, that method is bound; otherwise,

2. If a method with the method-name specified in the invocation is defined in one of
the classes that is inherited by the class of the object, that method is bound.
Inherited classes are inspected in turn including any classes inherited from
higher levels of the class hierarchy.



Program results

The contents of the RETURN-VALUE special register are used as a program’s
return result when returning to the operating system.

Class inheritance

Class inheritance is a mechanism for using the interface and implementation of one
or more classes as the basis for another class. The inheriting class, also known as a
subclass, inherits from one class, known as the superclass. The subclass has all the
methods defined for the inherited class definition, including any methods that the
inherited definition or definitions inherited. The subclass has all the data definitions
defined for the inherited class or classes, including any data definitions that the
inherited class or classes inherited. These inherited data definitions define inherited
data for every object of the subclass and for its factory. The inherited object data
are initialized when an object is created. The inherited factory data are allocated
independently from the factory data of the inherited class or classes and are
initialized when the factory of the subclass is created. The inherited factory data are
visible only to factory methods defined in the class that declared the data. The
inherited object data are visible only to object methods defined in the class that
declared the data. The subclass may define new methods and additional data
augmenting the set of inherited methods and the inherited data.

Elastic COBOL and Java support single inheritance; that is, inheriting from only one
class. Elastic COBOL programs can currently inherit only from one Java class using
the INHERITS clause in the identification division. By default, Elastic COBOL
programs inherit from java.applet.Applet. Only change this if necessary for the
program; if not inheriting from java.applet.Applet or a subclass of java.applet.Applet,
the Elastic COBOL program cannot be run as an applet. All Java objects, including
Elastic COBOL programs, ultimately inherit from java.lang.Object, and include its
methods.

Object life cycle

The life cycle for an object begins when it is created and ends when it is garbage
collected.

Garbage collection is the process of automatically removing from memory those

objects which can no longer be accessed from any live thread of execution. This
occurs transparently to the user and programmer and is the responsibility of the

Java Virtual Machine.

Life cycle for objects

An object is created when its constructor is called. The constructor is an unnamed
method automatically called when no method name is given in an INVOKE.



An object is destroyed either when it is determined that the object cannot take part
in the continued execution of the run unit, or when the run unit terminates,
whichever occurs first.

The timing and algorithm for the mechanism that determines whether or not an
object can take part in the continued execution of the run unit is defined by the Java
implementation.

Note -- Java implementations vary in the method used to collect the objects, but
they fall into two broad categories — conservative and exact. Conservative
collectors can only make educated guesses about when an object can no longer be
referenced, and as such, some garbage may be left in memory until program
termination. Exact collectors, as the name implies, are exact about which objects
may or may not be referenced and are more stable for long-running programs. If the
same run unit executes for a long period of time, use a Java implementation with an
exact collector. Other classifications, such as generational, copying, etc. refer to the
algorithms used in the collector, particularly the efficiency, and do not affect stability;
they may affect speed and scalability across multiple processors. Different Java
implementations are better for different programs; before deploying, it can help to try
your program with different Java implementations to see which is best for the
program in question.



10. Identification Division

The identification division identifies the program, class or method.
The paragraph header identifies the type of information contained in the paragraph.

General format
[IDENTIFICATION DIVISION.]

{{program-id-paragraph | {class-id-paragraph} | {method-id-paragraph}}

Program definition

A program definition is a source unit introduced by an identification division
containing the PROGRAM-ID paragraph.

A class definition is a source unit introduced by an identification division containing
the CLASS-ID paragraph.

A method definition is a source unit introduced by an identification division
containing the METHOD-ID paragraph.

A program definition may contain an environment division, a data definition and a
procedure division. A program definition may end with an END PROGRAM header.

A class definition may contain an environment division, a data division and a
procedure division. A class definition MUST end with an END CLASS header.

A method definition may contain an environment division, a data division and a
procedure division. A method definition MUST end with an END METHOD header. A
method definition must be contained within a class definition.

PROGRAM-ID Paragraph

The PROGRAM-ID paragraph specifies the name by which a program is identified
and assigns selected program attributes to that program.

General format
{PROGRAM-ID|PROGRAM|PROGRAM IDENTIFICATION}.

{program-name-1|literal-1} [AS literal-1][INHERITS literal-2].
{{IS [NOT] COMMON}|

{IS [NOT] RESIDENT}|

{IS [NOT] INITIAL}|

{IS [NOT] EXTERNAL}|

{IS [NOT] RECURSIVE}|

{IS [NOT] FINAL}|

{IS [NOT] PUBLIC}

{IS PRIVATE}|

{IS PROTECTED}|

{IS PACKAGE}} PROGRAM ...



[IMPLEMENTS literal-3...]

Syntax rules
PROGRAM is the traditional COBOL source unit.

Literal-1 shall be an alphanumeric literal or a national literal and shall not be a
figurative constant.

If both program-name-1 and literal-1 are specified by using AS keyword, literal-1
takes precedence for naming.

If specified, literal-1 is the Java class name. If program-name-1 is used, all letters
are converted to lowercase, and all dashes are converted to underscores in the
Java class name. If the program being specified is a hested COBOL program, the
Java class name is preceded by the containing program's class name followed by a
dollar sign '$' followed by the Java class name of the subprogram.

A program contained within another program shall not be assigned the same name
as that of any other program contained within the separately compiled program that
contains this program.

The optional COMMON clause may only be used if the program is contained within
another program.

The INHERIT clause specifies from which class this program should inherit
functionality.

General rules

Literal-1, if specified, is the name of the program that is externalized to the operating
environment.

The COMMON clause specifies that the program is common. A common program is
contained within another program, but may be called from programs other than the
program containing it. (See Scope of names.)

The INITIAL clause specifies that the program is initial. When an initial program is
activated, the data items and file connectors contained in it and any program
contained within it are set to their initial states.

The RESIDENT clause specifies that the program is resident. When another
program attempts to CANCEL a resident program, the cancel is ineffective.

The INHERITS clause specifies that the program should inherit functionality from the
named class. By default, Elastic COBOL programs inherit from java.applet.Applet;
changing this will make Elastic COBOL programs no longer functional as applets
unless the literal-2 inherits in turn from Applet (such as Japplet). All Java classes,
including Elastic COBOL programs, inherit ultimately from java.lang.Object and can
inherit only from one superclass (single-inheritance).

The RECURSIVE attribute indicates that a program may CALL itself. This is treated
as commentary because all Elastic COBOL programs may be called recursively.

The FINAL attribute indicates that this unit may not be inherited or overridden.

The PUBLIC attribute indicates that any program may CALL or INVOKE this unit.
This is the default.



The PRIVATE or NOT PUBLIC attribute indicates that only programs in this overall
source unit may CALL or INVOKE this unit.

The PROTECTED attribute indicates that only programs in this overall source unit or
in source units extending this source unit may CALL or INVOKE this unit.

CLASS-ID Paragraph

The CLASS-ID paragraph specifies the name by which a class is identified and
assigns selected program attributes to that class.

General format
{CLASS-ID}.

{program-name-1|literal-1} [AS literal-1][INHERITS literal-2].
{{IS [NOT] COMMON}|

{IS [NOT] RESIDENT}|

{IS [NOT] INITIAL}|

{IS [NOT] EXTERNAL}|

{IS [NOT] RECURSIVE}|

{IS [NOT] FINAL}|

{IS [NOT] PUBLIC}

{IS PRIVATE}|

{IS PROTECTED}|

{IS PACKAGE}} PROGRAM ...
[IMPLEMENTS literal-3...]

Syntax rules

Literal-1 shall be an alphanumeric literal or a national literal and shall not be a
figurative constant.

If both program-name-1 and literal-1 are specified by using AS keyword, literal-1
takes precedence for naming.

If specified, literal-1 is the Java class name. If program-name-1 is used, all letters
are converted to lowercase, and all dashes are converted to underscores in the
Java class name. If the program being specified is a nested COBOL program, the
Java class name is preceded by the containing program's class name followed by a
dollar sign '$' followed by the Java class name of the subprogram.

A program contained within another program shall not be assigned the same name
as that of any other program contained within the separately compiled program that
contains this program.

The optional COMMON clause may only be used if the program is contained within
another program.

CLASS units INHERIT (also known as extend) exactly one superclass (also known
as a parent or base class).

The INHERIT clause specifies from which class this program should inherit
functionality.



CLASS units may IMPLEMENT multiple interfaces. An interface is not a class, but
defines the structure which a class must have. Note that currently
java.lang.Runnable and java.io.Serializable may not be specified as all Elastic
COBOL programs implement these interfaces already.

General rules

Literal-1, if specified, is the name of the program that is externalized to the operating
environment.

The COMMON clause specifies that the program is common. A common program is
contained within another program, but may be called from programs other than the
program containing it. (See Scope of names.)

The INITIAL clause specifies that the program is initial. When an initial program is
activated, the data items and file connectors contained in it and any program
contained within it are set to their initial states.

The RESIDENT clause specifies that the program is resident. When another
program attempts to CANCEL a resident program, the cancel is ineffective.

The INHERITS clause specifies that the program should inherit functionality from the
named class. By default, Elastic COBOL programs inherit from java.applet.Applet;
changing this will make Elastic COBOL programs no longer functional as applets
unless the literal-2 inherits in turn from Applet (such as Japplet). All Java classes,
including Elastic COBOL programs, inherit ultimately from java.lang.Object and can
inherit only from one superclass (single-inheritance).

CLASS units may be instantiated (created) by either Elastic COBOL programs or
Java programs.

The RECURSIVE attribute indicates that a program may CALL itself. This is treated
as commentary because all Elastic COBOL programs may be called recursively.

The FINAL attribute indicates that this unit may not be inherited or overridden.

The PUBLIC attribute indicates that any program may CALL or INVOKE this unit.
This is the default.

The PRIVATE or NOT PUBLIC attribute indicates that only programs in this overall
source unit may CALL or INVOKE this unit.

The PROTECTED attribute indicates that only programs in this overall source unit or
in source units extending this source unit may CALL or INVOKE this unit.

METHOD-ID Paragraph

The METHOD-ID paragraph specifies the name by which a method is identified and
assigns selected program attributes to that method.

General format
{METHOD-ID}.

{program-name-1|literal-1} [AS literal-1][METHOD OVERRIDE].
{{IS [NOT] COMMON}|

{IS [NOT] RESIDENT}|

{IS [NOT] INITIAL}|



{IS [NOT] EXTERNALY}|

{IS [NOT] RECURSIVE}|

{IS [NOT] FINAL}|

{IS [NOT] PUBLIC}]|

{IS PRIVATE}]|

{IS PROTECTED}|

{IS PACKAGE}} PROGRAM ...

Syntax rules

Literal-1 shall be an alphanumeric literal or a national literal and shall not be a
figurative constant.

If both program-name-1 and literal-1 are specified by using AS keyword, literal-1
takes precedence for naming.

If specified, literal-1 is the Java class name. If program-name-1 is used, all letters
are converted to lowercase, and all dashes are converted to underscores in the
Java class name. If the program being specified is a hested COBOL program, the
Java class name is preceded by the containing program's class name followed by a
dollar sign '$' followed by the Java class name of the subprogram.

A program contained within another program shall not be assigned the same name
as that of any other program contained within the separately compiled program that
contains this program.

The optional COMMON clause may only be used if the program is contained within
another program.

The INHERIT clause specifies from which class this program should inherit
functionality.

METHOD OVERRIDE indicates that the method definition overrides a definition in a
superclass. This clause is only for commentary.

General rules

Literal-1, if specified, is the name of the program that is externalized to the operating
environment.

The COMMON clause specifies that the program is common. A common program is
contained within another program, but may be called from programs other than the
program containing it. (See Scope of names.)

The INITIAL clause specifies that the program is initial. When an initial program is
activated, the data items and file connectors contained in it and any program
contained within it are set to their initial states.

The RESIDENT clause specifies that the program is resident. When another
program attempts to CANCEL a resident program, the cancel is ineffective.

The INHERITS clause specifies that the program should inherit functionality from the
named class. By default, Elastic COBOL programs inherit from java.applet.Applet;
changing this will make Elastic COBOL programs no longer functional as applets
unless the literal-2 inherits in turn from Applet (such as Japplet). All Java classes,



including Elastic COBOL programs, inherit ultimately from java.lang.Object and can
inherit only from one superclass (single-inheritance).

The RECURSIVE attribute indicates that a program may CALL itself. This is treated
as commentary because all Elastic COBOL programs may be called recursively.

The FINAL attribute indicates that this unit may not be inherited or overridden.

The PUBLIC attribute indicates that any program may CALL or INVOKE this unit.
This is the default.

The PRIVATE or NOT PUBLIC attribute indicates that only programs in this overall
source unit may CALL or INVOKE this unit. Only other METHODS in this CLASS
may INVOKE this unit.

The PROTECTED attribute indicates that only programs in this overall source unit or
in source units extending this source unit may CALL or INVOKE this unit.



11. Environment Division

The environment division specifies those aspects of a data processing problem that
are dependent upon the physical characteristics of a specific computer. This
division allows specification of the configuration of the compiling computer and the
object computer. In addition, information relative to input-output control, special
hardware characteristics, and control techniques may be given.

General format
[ ENVIRONMENT DIVISION. ]

[ configuration-section ]
[ input-output-section]

Configuration Section

The configuration section specifies aspects of the data processing system that are
dependent on the specific system as well as special control technigues and a means
of associating a local name with an external resource. This section is divided into
paragraphs.

The SOURCE-COMPUTER paragraph, which describes the computer configuration
on which the source element is compiled.

The OBJECT-COMPUTER paragraph, which describes the computer configuration
on which the object program produced by the compiler is to be run.

The SPECIAL-NAMES paragraph, which provides a means for specifying the
currency sign, selecting the decimal point, specifying symbolic-characters, relating
implementor-names to user-specified mnemonic-names, relating alphabet-names to
character sets or collating sequences, and relating class-names to sets of
characters.

The REPOSITORY paragraph, which provides a means for associating a local name
with an external resource.

The FIGURATIVE-CONSTANTS paragraph associate a figurative constant with a
value for Wang compatibility.

General format
CONFIGURATION SECTION.

[ source-computer-paragraph ]

[ object-computer-paragraph ]

[ special-names-paragraph ]

[ repository-paragraph ]

[ figurative-constants-paragraph ]

Syntax rules

1. The configuration section shall not be specified in a program that is contained
within another program.



2. The configuration section may be specified in a program definition..

General rules

The entries explicitly or implicitly specified in the configuration section of a program
that contains other programs apply to each contained program.

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph provides a means of describing the
computer upon which the program is to be compiled.

General format
SOURCE-COMPUTER. [computer-name [WITH DEBUGGING MODE].]

General rules

1. All clauses of the SOURCE-COMPUTER paragraph apply to the program in
which they are explicitly or implicitly specified and to any program contained
within that program.

2. When the SOURCE-COMPUTER paragraph is not specified and the program is
not contained within a program including a SOURCE-COMPUTER paragraph,
the computer on which the source program is being compiled is the source
computer.

3. When the SOURCE-COMPUTER paragraph is specified, but the computer-
name is not specified, the computer upon which the source program is being
compiled is the source computer.

4. If the WITH DEBUGGING MODE clause is specified in a program, all debugging
lines are compiled as if the indicator area contained a space.
The WITH DEBUGGING MODE also implies inclusion of debugging information
sufficient for the Elastic COBOL debugger.

NOTE - The DEBUGGING MODE clause is an obsolete element in this draft
International Standard and is to be deleted from the next revision of standard
COBOL.

5. If the WITH DEBUGGING MODE clause is not specified in a program and the
program is not contained within a program including a WITH DEBUGGING
MODE clause, any debugging lines are compiled as if they were comment lines.

6. The -debug compiler option implies WITH DEBUGGING MODE.
OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph provides a means of describing the computer
on which the program is to be executed.

General format
OBJECT-COMPUTER.

[computer-name
[MEMORY SIZE integer-1 {WORDS|CHARACTERS|MODULES}



[PROGRAM COLLATING SEQUENCE IS alphabet-name-1 ]
[SEGMENT-LIMIT integer-2]

-1

Syntax rules

Alphabet-name-1 shall reference an alphabet that defines an alphanumeric collating
sequence.

General rules

1.

10.

The computer-name may provide a means for identifying equipment
configuration. If computer-name is WANG, certain warnings are disabled.

All clauses of the OBJECT-COMPUTER paragraph apply to the program in
which they are explicitly or implicitly specified and to any program contained
within that program.

When the OBJECT-COMPUTER paragraph is not specified and the program is
not contained within a program including an OBJECT-COMPUTER paragraph,
the object computer is JVM.

When the OBJECT-COMPUTER paragraph is specified, but the computer-name
is not specified, the object computer is JVM.

The memory size clause is treated as documentary only.

When the PROGRAM COLLATING SEQUENCE clause is specified, the initial
alphanumeric program collating sequence is the collating sequence associated
with alphabet-name-1. When alphabet-name-1 is not specified, the initial
alphanumeric program collating sequence is the native alphanumeric collating
sequence.

When the PROGRAM COLLATING SEQUENCE clause is not specified and the
program is not contained within a program for which a PROGRAM COLLATING
SEQUENCE clause is specified, the initial program collating sequences are the
native alphanumeric collating sequence and the native national collating
sequence.

The alphanumeric program collating is used to determine the truth value of any
alphanumeric comparisons and national comparisons, respectively, that are:

a. Explicitly specified in relation conditions.
b. Explicitly specified in condition-name conditions.

The alphanumeric program collating sequence explicitly or implicitly established
by the OBJECT-COMPUTER paragraph is effective with the initial state of the
programs to which they apply.

The alphanumeric program collating sequence and national program collating
sequence are applied to alphanumeric and national sort or merge keys,
respectively, unless the sort or merge collating sequence has been maodified by
execution of a SET statement or a COLLATING SEQUENCE phrase is specified
in the respective SORT or MERGE statement.



The SEGMENT-LIMIT clause is treated as documentary
only.SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph provides a mechanism for defining platform,
system and vendor specific information.

General format

SPECIAL-NAMES.
[switch-clause]...
[implementor-clause]...
[alphabet-clause]...
[symbolic-clause]...
[class-clausel]...
[currency-clause]...
[decimal-point-clause]...
[cursor-clause]...
[crt-status-clause]...
[screen-control-clause]...
[event-status-clausel]...
[call-convention-clause]...
[return-code-clause]...
[dynamic-configuration-clause]...
[dynamic-environment-clause]...
[linkage-clause]...

The clause in SPECIAL-NAMES may be specified in any order subject to their using
items defined elsewhere in the SPECIAL-NAMES; if using items defined elsewhere
in the SPECIAL-NAMES, the dependency must be defined first.

General rules

1.

All clauses specified in the SPECIAL-NAMES paragraph for a program also
apply to programs contained within that program. The condition-names
specified in the containing program's SPECIAL-NAMES paragraph may be
referenced from any contained program.

Switch-name-1 identifies a switch from SWITCH-1 through SWITCH-26. The on
status and/or off status of an external switch may be associated with condition-
names. The status of that switch may be interrogated by testing these condition-
names (see Switch-status condition).

The status of a switch may be altered by execution of a SET mnemonic-name
statement that specifies as its operand the mnemonic-name associated with that
switch.

The NUMERIC SIGN clause sets the default numeric storage for the program.

The FILE CHARACTER sets the implicit directory separator character to literal-8,
e.g., “I" IS FILE CHARACTER or “\” IS FILE CHARACTER.



6. The INITIAL LINKAGE loads the library (.dll, .so, etc.) literal-9 at runtime. Do not
specify the .dll or .so, or the initial ‘lib’ in Posix.

7. The INITIAL CLASS loads the class literal-10 at runtime (Java initial class
libraries such as JDBC drivers). Do not specify the .class ending.

8. The ALPHABET clause provides a means of relating a name to a specified
coded character set and collating sequence.

NOTE - An alphabet defines both a coded character set and a collating
sequence. An alphabet-name referenced in the PROGRAM COLLATING
SEQUENCE clause of the OBJECT-COMPUTER paragraph or in the
COLLATING SEQUENCE phrase of a SORT, MERGE, or SET statement
references a collating sequence. An alphabet-name referenced in a SYMBOLIC
CHARACTERS clause or in the CODE-SET clause of a file description entry
references a coded character set.

When the ALPHABET clause is specified:

a. STANDARD-1 and STANDARD-2 in Elastic COBOL refer to the Unicode
character set and the ASCII equivalent characters which begin the Unicode
character set.

b. When the NATIVE phrase is specified, the native alphanumeric coded
character set and native alphanumeric collating sequence are referenced,;
otherwise, the native national coded character set and native national
collating sequence are referenced.

c. When literal-phrase is specified, the coded character set and/or collating
sequence is defined according to the following rules, where the native coded
character set is the type of coded character set or collating sequence being
defined, either alphanumeric or national:

o The value of each literal specifies:

¢ The ordinal number of a character within the native character set, if the
literal is numeric. This value shall not exceed the value that represents
the number of characters in the native character set.

¢ Otherwise, the actual character within the native character set. If the
value of the literal contains multiple characters, each character in the
literal, starting with the leftmost character, is assigned successive
ascending positions in the collating sequence being specified.

o The order in which the literals appear in the ALPHABET clause
specifies, in ascending sequence, the ordinal number of the character
within the collating sequence being specified.

o Any characters of the native collating sequence that are not
specified in the literal phrase shall assume a position in the collating
sequence that is greater than that of the highest character specified in
this literal phrase. The relative order within the set of these unspecified
characters is unchanged from the native collating sequence.

o If a character code set is being specified, the implementor defines
the ordinal number within the character code set being specified for each



10.

11.

12.

13.

character within the native character set that is not specified by the
literal-1 phrase.

o If the THROUGH phrase is specified, the set of contiguous
characters in the native character set beginning with the character
specified by the value of literal-1, and ending with the character specified
by the value of literal-2, is assigned a successive ascending position in
the collating sequence being specified. In addition, the set of contiguous
characters specified by a given THROUGH phrase may specify
characters of the native character set in either ascending or descending
sequence.

o If the ALSO phrase is specified, the characters of the native
character set specified by the value of literal-1 and literal-3 are assigned
to the same ordinal position in the collating sequence being specified or
in the character code set that is used to represent the data, and if
alphabet-name-1 is referenced in a SYMBOLIC CHARACTERS clause,
only literal-1 is used to represent the character in the native character
set.

The character that has the highest ordinal position in the program collating
sequence is associated with the figurative constant HIGH-VALUE, except when
this figurative constant is specified as a literal in the SPECIAL-NAMES
paragraph. If more than one character has the highest position in the program
collating sequence, the last character specified is associated with the figurative
constant HIGH-VALUE.

The character that has the lowest ordinal position in the program collating
sequence is associated with the figurative constant LOW-VALUE, except when
this figurative constant is specified as a literal in the SPECIAL-NAMES
paragraph. If more than one character has the lowest position in the program
collating sequence, the first character specified is associated with the figurative
constant LOW-VALUE.

When specified as literals in the SPECIAL-NAMES paragraph, the figurative
constants HIGH-VALUE and LOW-VALUE are associated with those characters
having the highest and lowest positions, respectively, in the native alphanumeric
collating sequence otherwise.

When the SYMBOLIC CHARACTERS clause is specified:
a. Symbolic-character-1 defines a figurative constant.

b. The value of figurative constant symbolic-character-1 is the internal
representation of the character at ordinal position integer-1 in the native
alphanumeric character set or, if the IN phrase is specified, in the character
set referenced by alphabet-name-3.

The CLASS clause provides a means for relating a name to the specified set of
characters listed in that clause. The characters specified by the values of the
literals in this clause define the exclusive set of characters of which class-name-
1 consists.

The value of each literal specifies:



a. When the literal is numeric, the ordinal number of a character within the
relevant native character set.

b. Otherwise, the actual character within the relevant native character set. If
the value of literal-5 contains multiple characters, each character in the literal
is included in the set of characters identified by class-name-1.

If the THROUGH phrase is specified, the contiguous characters in the native
character set beginning with the character specified by the value of literal-5, and
ending with the character specified by the value of literal-6, are included in the
set of characters identified by class-name-1. In addition, the contiguous
characters specified by a given THROUGH phrase may specify characters of the
native character set in either ascending or descending sequence.

14. The CURRENCY SIGN clause is used to specify a currency string that is placed
into numeric-edited data items when they are used as receiving items and de-
edited from the data item when it is used as a sending item that has a numeric
or numeric-edited receiving item. In addition, it is used to determine which
symbol shall be used in a PICTURE character string to specify the presence of
this currency string. This symbol is referred to as the currency symbol.

Literal-7 represents the value of the currency string.

15. The clause DECIMAL-POINT IS COMMA means that the functions of comma
and period are interchanged in the character-string of the PICTURE clause and
in numeric literals.

16. The content of the data item referenced by data-name-2 specifies the position of
the cursor at the beginning of the execution of an ACCEPT screen statement.
This content shall be updated by the execution of a successful ACCEPT screen
statement to indicate the position of the visible cursor upon termination. (See
Cursor locator.)

17. Data-name-3 shall be updated during the execution of an ACCEPT screen
statement as described in CRT status.

SWITCH Clause

General format
Switch-name-1 [ON STATUS condition-name-1] [OFF STATUS condition-name-2]

Switch-name-1 [OFF STATUS condition-name-2] [ON STATUS condition-name-1]

Where switch-name-1 is:

SWITCH integer-1

| SWITCH nonnumeric-literal-1
| SYSTEM-SWITCH-1

| SYSTEM-SWITCH-2

| SYSTEM-SWITCH-3

| SYSTEM-SWITCH-4

| SYSTEM-SWITCH-5

| SYSTEM-SWITCH-6
| SYSTEM-SWITCH-7




| SYSTEM-SWITCH-8

| SYSTEM-SWITCH-9

| SYSTEM-SWITCH-10
| SYSTEM-SWITCH-11
| SYSTEM-SWITCH-12
| SYSTEM-SWITCH-13
| SYSTEM-SWITCH-14
| SYSTEM-SWITCH-15
| SYSTEM-SWITCH-16
| SYSTEM-SWITCH-17
| SYSTEM-SWITCH-18
| SYSTEM-SWITCH-19
| SYSTEM-SWITCH-20
| SYSTEM-SWITCH-21
| SYSTEM-SWITCH-22
| SYSTEM-SWITCH-23
| SYSTEM-SWITCH-24
| SYSTEM-SWITCH-25
| SYSTEM-SWITCH-26

Syntax rules

1.
2.

SWITCH integer-1 refers to the SWITCH numbered integer-1.

SWITCH nonnumeric-literal-1 refers to nonnumeric-literal-1 between "A" and "Z",
or "a" and "z"; SWITCH "A" is SWITCH-1, ..., SWITCH "Z" is SWITCH-26.

Condition-name-1 refers to the new condition name which will be true when the
given switch is in the ON state.

Condition-name-2 refers to the new condition name which will be true when the
given switch is in the OFF state.

General rules

1.

The condition-name-1 and condition-name-2 defined to reference the given
switch may be treated like any level 88 condition-name.

The SWITCH defaults to the OFF state.

To turn the SWITCH to the ON state, a setting must be made at runtime.
Program parameters "s1" ... "s26" may be set to "true" to set the switch to true.
Command line parameters /A to /Z will set SYSTEM-SWITCH-1 to SYSTEM-
SWITCH-26. Command line parameters /1 to /9 will set SYSTEM-SWITCH-1 to
SYSTEM-SWITCH-9.

Certain aliases exist for the switches for compatibility with more platforms:

Name Synonyms

SYSTEM-SWITCH-1 SWITCH-1 UPSI-1
SYSTEM-SWITCH-2 SWITCH-2 UPSI-2
SYSTEM-SWITCH-3 SWITCH-3 UPSI-3
SYSTEM-SWITCH-4 SWITCH-4 UPSI-4
SYSTEM-SWITCH-5 SWITCH-5 UPSI-5
SYSTEM-SWITCH-6 SWITCH-6 UPSI-6




Name Synonyms
SYSTEM-SWITCH-7 SWITCH-7 UPSI-7
SYSTEM-SWITCH-8 SWITCH-8 UPSI-8 SYSTEM-SHUTDOWN
SYSTEM-SWITCH-9 SWITCH-9 UPSI-9
SYSTEM-SWITCH-10 SWITCH-10 UPSI-0 SYSTEM-SWITCH-0
SWITCH-0
SYSTEM-SWITCH-11 SWITCH-11
SYSTEM-SWITCH-12 SWITCH-12
SYSTEM-SWITCH-13 SWITCH-13
SYSTEM-SWITCH-14 SWITCH-14
SYSTEM-SWITCH-15 SWITCH-15
SYSTEM-SWITCH-16 SWITCH-16
SYSTEM-SWITCH-17 SWITCH-17
SYSTEM-SWITCH-18 SWITCH-18
SYSTEM-SWITCH-19 SWITCH-19
SYSTEM-SWITCH-20 SWITCH-20
SYSTEM-SWITCH-21 SWITCH-21
SYSTEM-SWITCH-22 SWITCH-22
SYSTEM-SWITCH-23 SWITCH-23
SYSTEM-SWITCH-24 SWITCH-24
SYSTEM-SWITCH-25 SWITCH-25
SYSTEM-SWITCH-26 SWITCH-26

IMPLEMENTOR Clause

General format
predefined-mnemonic IS mnemonic-name-1

mnemonic-name-2 IS mnemonic-name-2
nonnumeric-literal-1 IS INITIAL CLASS
nonnumeric-literal-2 IS INITIAL LINKAGE
nonnumeric-literal-3 IS FILE CHARACTER
NUMERIC SIGN TRAILING [SEPARATE]
NUMERIC SIGN LEADING [SEPARATE]
CONSOLE IS CRT

CRT IS CONSOLE

ARGUMENT-VALUE IS COMMAND-LINE

Where predefined-mnemonic is:
CONSOLE
| PRINTER
| SYSouT
| SYSIN
| SYSTEM
| SYSERR
| SERVLETOUT
| SERVLETIN
| ARGUMENT-NUMBER
| ARGUMENT-VALUE
| ENVIRONMENT-NAME
| ENVIRONMENT-VALUE



| PAGE

| COMMAND-LINE
| I1-O-FEEDBACK

| DATA-AREA

| OPEN-FEEDBACK
| LOCAL-DATA

| PIP-DATA
| ATTRIBUTE-DATA

Syntax rules

Mnemonic-name-1 is a user variable.

2. The phrases 'CONSOLE IS CRT', 'CRT IS CONSOLE', 'ARGUMENT-VALUE IS
COMMAND-LINE' are treated as commentary.

Nonnumeric-literal-1 must be a Java class name.

Nonnumeric-literal-2 must be a native dynamic link library or native shared
object library.

Nonnumeric-literal-3 must be one character in length.
nonnumeric-literal-1 1S INITIAL CLASS
nonnumeric-literal-2 1S INITIAL LINKAGE
nonnumeric-literal-3 IS FILE CHARACTER

© N o O

General rules

1. Default mnemonic-name-1 as a user defined mnemonic name for predefined-
mnemonic or for another user defined mnemonic-name-2.

2. Certain synonyms for the predefined mnemonics exist:

Name Synonym

PRINTER PRINT, PRINTER-1

SYSOUT SYSLST, SYSLIST, SYSOUT-FLUSH, SYSPCH,
SYSPUNCH

SYSIN SYSIPT

SYSTEM REQUESTOR

SERVLETOUT SERVLET-OUT, SESSION-OUT, SESSIONOUT

SERVLETIN SERVLET-IN, SESSION-IN, SESSIONIN

3. The CONSOLE device is the graphical CONSOLE where possible. If no
graphics are available, a CURSES (text terminal device) is used. If CURSES is
not available, then it defaults to SYSOUT.

4. The PRINTER device maps to the Java printing capabilities for the platform.
The PRINTER always refers to a graphical printer, usually the default printer for
the platform.

SYSOUT refers to the standard output stream.
SYSIN refers to the standard input stream.
SYSTEM refers to SYSOUT for output, SYSIN for input.



10.

11.

12.

13.

14.

15.

16.

17.

18.

SYSERR refers to the standard error output stream.

SERVLETOUT refers to the default session output stream. This is the output
stream for any runtime environment, such as Servlets, TCP/IP session
environment, etc. The SERVLETOUT device is different for each COBOL
session.

SERVLETIN refers to the default session input stream. This is the input stream
for any runtime environment, such as Servlets, TCP/IP session environment, etc.
The SERVLETIN device is different for each COBOL session.

ARGUMENT-NUMBER is used to set the ARGUMENT-NUMBER for X/Open
argument handling. Avoid in new code as this cannot be made thread-safe. See
SET for better capabilities.

ARGUMENT-VALUE is used to set and get the ARGUMENT-VALUE for X/Open
argument handling. Avoid in new code as this cannot be made thread-safe. See
SET for better capabilities.

ENVIRONMENT-NAME is used to set the ENVIRONMENT-NAME for X/Open
environment variable handling. Avoid in new code as this cannot be made
thread-safe. See SET for better capabilities. This actually refers to program
parameters rather than environment variables.

ENVIRONMENT-VALUE is used to set the ENVIRONMENT-VALUE for X/Open
environment variable handling. Avoid in new code as this cannot be made
thread-safe. See SET for better capabilities. This actually refers to program
parameters rather than environment variables.

Nonnumeric-literal-1 is loaded when the COBOL program is loaded, as if by the
Java sequence Class.forName(nonnumeric-literal-1).

Nonnumeric-literal-2 is loaded as a native library, as if by the Java sequence
System.loadLibrary(nonnumeric-literal-2).

Nonnumeric-literal-3 is set as the default implicit file character, the character in a
filename separating the directory paths and the final filename from one another.
This character is replaced by the actual platform separator character in
filenames dynamically. By default, this character is '\' in Windows, and '/* in
Posix. When "\" IS FILE CHARACTER is specified, the name "mydir\myfile" will
automatically be converted to "mydir/myfile” in Posix. All programs in a run unit
must use the same value for the file character.

The NUMERIC clauses set the default location of the numeric sign. Normally,
the default is TRAILING, but this clause may be used to override the normal
default.

ALPHABET Clause

Define a user name for an alphabet as a sequence of characters or as a pre-defined
alphabet.

ALPHABET alphabet-1 IS alphabet-phrase



Where alphabet-phrase is:
STANDARD-1
| STANDARD-2
| NATIVE
| EBCDIC
| character-specifications

Where character-specifications is:
{character-specification [ALSO character-specification]...}...
Where character-specification is:
{integer-1 [THROUGH|THRU integer-2]}
{nonnumeric-literal-1 [THROUGH|THRU nonnumeric-literal-2]}
[{SPACE|SPACES}
[{QUOTE|QUOTES}

Syntax rules
1. Each character specification is assigned to the sequence in order.
2. Integer-1 and integer-2 shall be unsigned.
3. THROUGH and THRU are synonymous.
4

Nonnumeric-literal-1 must be one character in length if THROUGH is specified; it
is treated the same as if its ordinal value were integer-1.

5. Nonnumeric-literal-2 must be one character in length if THROUGH is specified; it
is treated the same as if its ordinal value were integer-2.

6. Each character-specification-1 ALSO character-specification-2 has both integer-
1 and integer-2 at the same position in the collating sequence.

7. Whenever THROUGH is specified, all characters starting from integer-1 and
ending at integer-2, inclusive, are added in order to the class.

8. SPACES and QUOTES are treated as single character items.

SYMBOLIC Clause

Define symbolic names for characters.

General format
SYMBOLIC CHARACTERS

[{symbolic-character-1}... [IS|JARE] {integer-1}...]

Syntax rules

1. Agiven symbolic-character-1 shall be specified only once within the SYMBOLIC
CHARACTER clause of this SPECIAL-NAMES paragraph.

2. The relationship between each symbolic-character-1 and the corresponding
integer-1 is by position in the SYMBOLIC CHARACTERS clause. The first
symbolic-character-1 is paired with the first integer-1, the second symbolic-
character-1 with the second integer-1, and so on.



3. There shall be a one-to-one correspondence between occurrences of symbolic-
character-1 and occurrences of integer-1.

General rules

1. Symbolic-character-1 may be used afterwards in the program to refer to the
character integer-1.

CLASS Clause

Define a class of characters, not to be confused with the object oriented class
concept.

General format
CLASS class-name-1 character-specifications

Where character-specifications is:
{character-specification [ALSO character-specification]...}...

Where character-specification is:
{integer-1 [THROUGH|THRU integer-2]}
[{nonnumeric-literal-1 [THROUGH|THRU nonnumeric-literal-2]}
[{SPACE|SPACES}
[{QUOTE|QUOTES}

Syntax rules
1. Each character specification is assigned to the sequence in order.

2. Integer-1 and integer-2 shall be unsigned.
3. THROUGH and THRU are synonymous.
4

Nonnumeric-literal-1 must be one character in length if THROUGH is specified; it
is treated the same as if its ordinal value were integer-1.

5. Nonnumeric-literal-2 must be one character in length if THROUGH is specified; it
is treated the same as if its ordinal value were integer-2.

6. Each character-specification-1 ALSO character-specification-2 has both integer-
1 and integer-2 at the same position in the collating sequence.

7. Whenever THROUGH is specified, all characters starting from integer-1 and
ending at integer-2, inclusive, are added in order to the class.

8. SPACES and QUOTES are treated as single character items.

General rules

1. Class-name-1 becomes a class of characters, suitable for specification as a
COLLATING SEQUENCE or in validity checking of COBOL data.



CURRENCY Clause

Replace the default currency character ($) with an alternative currency character,
usable in the COBOL source code PICTURE strings.

General format
CURRENCY SIGN nonnumeric-literal-1

Syntax rules
Nonnumeric-literal-1 must be a nonnumeric-literal 1 character in length.

General rules

The first character of nonnumeric-literal-1 becomes the new currency symbol used
in the COBOL source code from that point onwards.

DECIMAL-POINT Clause

Interchange the operation of the decimal point (.) and comma (,) characters for basic
internationalization.

General format
DECIMAL-POINT IS COMMA

COMMA IS DECIMAL-POINT
DECIMAL-POINT IS nonnumeric-literal-1
COMMA IS nonnumeric-literal-2

Syntax rules
1. Nonnumeric-literal-1 must be a nonnumeric-literal 1 character in length.

2. Nonnumeric-literal-2 must be a nonnumeric-literal 1 character in length.

General rules
1. DECIMAL-POINT IS COMMA, or COMMA IS DECIMAL-POINT interchange the
usage of the decimal-point (.) and comma (,) characters in the COBOL source
code.

2. DECIMAL-POINT is nonnumeric-literal-1 assigns the first character of
nonnumeric-literal-1 to be the replacement decimal-point (.) in the COBOL
source code.

3. COMMA is nonnumeric-literal-2 assigns the first character of nonnumeric-literal-
2 to be the replacement comma (,) in the COBOL source code.



CURSOR Clause

Set the screen section CURSOR identifier. This may also be defined in-line with the
variable identifier-1.

General format
CURSOR identifier-1

Syntax rules

identifier-1 is used to hold the CURSOR information for the text and graphical
screen section.

General rules
See Chapter 8, Input/Output, for a full description.

CRT-STATUS Clause

Set the screen section CRT STATUS identifier. This may also be defined in-line with
the variable identifier-1.

General format
CRT STATUS identifier-1

Syntax rules

identifier-1 is used to hold the CRT STATUS for the text and graphical screen
section.

General rules
See Chapter 8, Input/Output, for a full description.

SCREEN CONTROL Clause

Set the screen section SCREEN CONTROL identifier. This may also be defined in-
line with the variable identifier-1.

General format
SCREEN CONTROL identifier-1

Syntax rules

identifier-1 is used to hold the SCREEN CONTROL information for the graphical
screen section.

General rules
See Chapter 8, Input/Output, for a full description.



EVENT STATUS Clause

Set the screen section EVENT STATUS identifier. This may also be defined in-line
with the variable identifier-1.

General format
EVENT STATUS identifier-1

Syntax rules
identifier-1 is used to hold the EVENT STATUS information for the graphical screen
section.

General rules
See Chapter 8, Input/Output, for a full description.

CALL-CONVENTION Clause

The CALL-CONVENTION clause sets up a user name for a calling convention
number. The calling convention number is passed through to native code, or used
by a Java class accessible by Heirloom, to determine how the native routine should
be called. The usage is system dependent, dependent upon the implementation of
native code for the platform and how it ascribes meanings to these values, but the
usage generally follows Micro Focus conventions.

General format
CALL-CONVENTION integer-1 IS call-convention-1

Syntax rules
1. Call-convention-1 is usable as a call-convention representing calling convention
integer-1.

The default meaning for the bits of integer-1 is described by the following table.
Not all bits will be meaningful on all platforms. These values may be added for a
cumulative effect.

Parameters Right to Left 0
Parameters Left to Right 1
Parameters Removed from Stack by Caller 0
Parameters Removed from Stack by Called 2
Return Code Updated on Exit 0
4
0
8

Return Code Not Updated on Exit
Normal Linking Behavior
Call Resolved at Link Time

OS/2 OptLink 16
Thunked to 16 Bit 32
NT STDCALL 64
Java Unsafe (direct pointers to COBOL memory) 128
2. Typical calling convention sets in Windows are:
C 0
PASCAL 3
WINAPI (Old) 11




OS2API 11

STDCALL 64

UNSAFE 128

3. The default calling convention is STDCALL. The default is affected by the DLL-
CONVENTION program parameter; when 0, C is used; when 1, STDCALL is
used; when 2, UNSAFE is used.

4. Java normally does not allow access to the heap storage used for object values,
thus when calling a C library the runtime prepares parameters in advance of the
invocation of the library function. Most COBOL numerics are converted to C
data types int, long, float, double or char *. They are converted to big-endian or
little-endian format regardless of the COBOL data types used to store them. A
temporary is allocated in the C runtime heap (malloc()) and data copied from the
Java (COBOL) variable space into it. It is these that are passed to the C library
function. For BY REFERENCE parameters, the values are copied back to Java
(COBOL) variable space upon return from the library function and the temporary
storage is freed. This is the safest form of action when Java and non-Java
programs are mixed. The UNSAFE calling convention changes this. The Java
Unsafe API is intended to be used by JVM internal operations, performance
enhancing and analysis tools. Unsafe allows access to the actual pointers of
Java variables. When the UNSAFE calling convention or -DDLL-
CONVENTION=2 is specified these pointers are passed to the C library
functions. This gives the libraries direct access to the linear memory spaced
used for COBOL variable storage. You must use -cache:disable (the default) so
that COBOL operations reload the memory that may be modified by the C library
and the called function must be aware of the big-endian/little-endian format
necessary or specify COBOL datatype parameters (e.g., IBM (ASCII) “-dt 77)
compiler option necessary to synchronize with the C library variable storage
convention.

RETURN-CODE Clause

The RETURN-CODE clause sets up a user name for the special register RETURN-
CODE which is the default storage area for data to be returned to the calling
program or environment.

General format
{RETURN-CODE|CONDITION-CODE|PROGRAM-STATUS return-code-identifier} |

{ return-code-identifier RETURN-CODE|CONDITION-CODE|PROGRAM-STATUS}

Syntax rules
return-code-identifier is treated as the special register RETURN-CODE.

DYNAMIC CONFIGURATION Clause

The DYNAMIC CONFIGURATION is used to set program parameters at runtime
from code.



General format
DYNAMIC CONFIGURATION {nonnumeric-literal-1 IS nonnumeric-literal-2}...

Syntax rules
1. Nonnumeric-literal-1 is the parameter name.

2. Nonnumeric-literal-2 is the parameter value.

General rules
1. The program parameter nonnumeric-literal-1 is set to the value nonnumeric-
literal-2 at runtime.

2. This program parameter affects only Elastic COBOL settings checked after the
program is initialized, and is available through the FUNCTION PARAMETER.

3. This setting is available across threads and sessions.



DYNAMIC ENVIRONMENT Clause

The DYNAMIC ENVIRONMENT is used to set System Properties at runtime from
code.

General format
DYNAMIC ENVIRONMENT {nonnumeric-literal-1 IS nonnumeric-literal-2}...

Syntax rules
1. Nonnumeric-literal-1 is the parameter name.

2. Nonnumeric-literal-2 is the parameter value.

General rules

1. The program parameter nonnumeric-literal-1 is set to the value nonnumeric-
literal-2 at runtime.

2. This System Property setting affects only Elastic COBOL settings checked after
the program is initialized, and any Java classes which check the System
Property setting after the program is initialized, and is available through the
FUNCTION PARAMETER. This setting is useful for communication of default
System Property settings to Java classes which are integrated with a Elastic
COBOL program.

3. This setting is available across threads and sessions.

LINKAGE Clause

The LINKAGE clause is for the AS/400 only and is treated as commentary with a
warning.

General format
LINKAGE TYPE {PROGRAM|PROCEDURE|nonnumeric-literal-1} FOR nonnumeric-
literal-2

[USING linkage-using-item...]
where linkage-using-item is:
ALL [DESCRIBED]
Integer-1 [DESCRIBED]
Integer-1 THROUGH|THRU integer-2 [DESCRIBED]

REPOSITORY Paragraph

The REPOSITORY paragraph allows specification of class hames that may be used
within the scope of this program.

General format
REPOSITORY.

[repository-item]...



where repository-item is:
{ CLASS class-name-1
| CLASS class-name-1 [IS|AS] nhonnumeric-literal-1
| object-class-id IS CLASS nonnumeric-literal-1
| COMPONENT object-class-id IS nhonnumeric-literal-1
| PROPERTY object-class-id IS nonnumeric-literal-1
| EVENT event-id CLASS object-class-name event-descriptor...

}

where event-descriptor is:
{ ADD nonnumeric-literal-2
| DELETE nonnumeric-literal-3
| USING nonnumeric-literal-4
| EOR nonnumeric-literal-6...

}

Syntax rules

1. Class-name-1 shall not be specified multiple times. Each use of class-name-1
defines the class reference; if nonnumeric-literal-1 is specified, the external
name reference is to nonnumeric-literal-1. The external name reference is a
Java class name.

COMPONENT defines a class-name, documenting it as a visual component.

PROPERTY defines a class-name, documenting it as a property of a visual
component.

4. EVENT defines an event handling class called event-id, a reference to the Java
AWT 1.1+ event model. The event-descriptor define the adapter class.

a. class-name-2 or nonnumeric-literal-7 names the interface class, e.g.,
"java.awt.event.ActionListener"

b. nonnumeric-literal-2 specifies the name of the add method, e.g.,
"addActionListener". By default, this name is formed from other elements.

¢. nonnumeric-literal-3 specifies the name of the remove method, e.g.,
"removeActionListener". By default, this name is formed from other
elements.

d. nonnumeric-literal-4 specifies the class of event object, e.g.,
"java.awt.event.ActionEvent".

e. Each repetition of nonnumeric-literal-6 specifies an event method which
compiles the interface named by object-class-name, which has a parameter
of nonnumeric-literal-4. Each repetition of nonnumeric-literal-6 to complete
the interface must be listed in order to correctly compile and link the Elastic
COBOL executable at the Java stage. The nonnumeric-literal-6 is the event
name for referencing in evaluation of events, e.g., "actionPerformed".

General rules

1. Class-name-1 is the name of a class that may be used throughout the scope of
the program.



2. The literal in the AS phrase, if specified, is the name that is externalized to the
operating environment and used to import from the operating environment. The

literal phrase should always be used. The operating environment is the Java
namespace.

3. Class-name-1 is used in the DATA DIVISION as the type for USAGE OBJECT

REFERENCE, and may be used in INVOKE to construct objects and INVOKE
static methods.

FIGURATIVE-CONSTANTS Paragraph

General format
FIGURATIVE-CONSTANTS.

{identifier-1 nonnumeric-literal-1} ...

Syntax rules
1. identifier-1 shall be a new figurative constant name.

2. Nonnumeric-literal-1 shall be the contents of identifier-1.

General rules

The FIGURATIVE-CONSTANTS paragraph is present for Wang compatibility and
should not be used in new code.

INPUT-OUTPUT Section

The INPUT-OUTPUT section deals with the information needed to control
transmission and handling of data between external media and the object program.

General format
[ INPUT-OUTPUT SECTION. ]

[ file-control-paragraph]
[ i-o-control-paragraph ]

Syntax rules
The input-output section may be specified in a program.

FILE-CONTROL Paragraph

The FILE-CONTROL paragraph specifies file-related information.

General format
FILE-CONTROL.

select-clause
[file-control-entry]...

where file-control-entry is:

Format 1 (indexed):



assign-clause
|access-clause
|[reserve-clause
|[record-key-clause
|alternate-record-key-clause
[file-status-clause
|organization-clause
|[recording-mode-clause
|password-clause
|control-area-clause
|data-size-clause
lindex-size-clause
[nodisplay-clause
Ipfkeys-clause
|cursor-column-clause
[file-locking-clause
|compression-clause
|lencryption-clause
Format 2 (relative):
assign-clause
|access-clause
|[reserve-clause
|[record-key-clause
|alternate-record-key-clause
[file-status-clause
|organization-clause
|[recording-mode-clause
|password-clause
|control-area-clause
|data-size-clause
lindex-size-clause
[nodisplay-clause
|Ipfkeys-clause
|cursor-column-clause
[file-locking-clause
|compression-clause
|lencryption-clause
Format 3 (sequential):
assign-clause
|access-clause
|padding-clause
|reserve-clause
[record-key-clause
|alternate-record-key-clause



[file-status-clause
|organization-clause
|record-delimiter-clause
|[recording-mode-clause
|password-clause
|control-area-clause
|data-size-clause
lindex-size-clause
[nodisplay-clause
|Ipfkeys-clause
|cursor-column-clause
[file-locking-clause
|compression-clause
|lencryption-clause

Format 4 (sort-merge):

assign-clause
|organization-clause

Syntax rules ALL FORMATS

1.

6.
7.

The SELECT clause shall be specified first in the file control entry. The clauses
that follow the SELECT clause may appear in any order.

Each file-name in the data division shall be specified only once in the FILE-
CONTROL paragraph. Each file-name specified in the SELECT clause shall
have a file description entry in the data division of the same factory, function,
method, object, or program.

Literal-1 shall be an alphanumeric literal and shall not be a figurative constant.

The meaning and rules for the allowable specification of device-name-1 and the
value of literal-1 are defined by the implementor.

Data-name-1 shall reference an alphanumeric data item and shall not be
subordinate to the file description entry for file-name-1.

Data-name-1 may be qualified.
Device-name-1 may be PRINTER, DISPLAY, or KEYBOARD.

FORMATS 1 AND 2
The MULTIPLE phrase shall be omitted for a file connector for which ACCESS
MODE IS SEQUENTIAL is specified or implied.

Format 1 shall be specified only for an indexed file connector. The associated file
description entry shall not be a sort-merge file description entry.

FORMAT 2

Format 2 shall be specified only for an relative file connector. The associated file
description entry shall not be a sort-merge file description entry.

The RELATIVE clause shall be specified if the DYNAMIC or RANDOM phrase of the
ACCESS clause is specified.



FORMAT 3

Format 3 shall be specified only for a sequential file connector. The associated file
description entry shall not be a sort-merge file description entry.

FORMAT 4

Format 4 shall be specified only for a sort-merge file connector. The associated file
description entry shall be a sort-merge file description entry.

General rules
ALL FORMATS

Format 4 shall be specified only for a sort-merge file connector. The associated file
description entry shall be a sort-merge file description entry.

1.

If the file connector referenced by file-name-1 is an external file connector (see
EXTERNAL clause),all file control entries in the run unit that reference this file
connector shall have:

a. The same specification for the OPTIONAL phrase.

b. A consistent specification for data-name-1, device-name-1, and literal-1 in
the ASSIGN clause. The operating system determines the consistency rules
for data-name-1, device-name-1, and literal-1.

The same value for integer-1 in the RESERVE clause.
The same organization.
The same access mode.

The same specification of alphabets for the COLLATING SEQUENCE
clause.

g. The same value for the PADDING CHARACTER clause.

h. The same external data item for data-name-7 in the RELATIVE KEY clause.

= o a o

i. The same data description entry for data-name-5 and each data-name-6 as
well as their relative location within the associated record.

j-  The same data description entry for data-name-2 and each data-name-3 as
well as their relative location within the associated record, the same number
of alternate record keys, and the same DUPLICATES phrase.

k. The same sharing mode.

I.  The same lock mode and the same choice of either single record locking or
multiple record locking.

The OPTIONAL phrase applies only to files opened in the input, I-O, or extend
mode. Its specification is required for files that are not necessarily present each
time the object program is executed.

Elastic COBOL follows ANSI standard in requiring the OPTIONAL keyword for
optional files. To match certain other COBOL implementations, Elastic COBOL
supports the $SET OPTIONAL-FILE directive to default to OPTIONAL. NOT
OPTIONAL may be used to override to the original behavior in this case.

The ASSIGN clause specifies the association of the file referenced by file-name-
1 to a storage medium referenced by device-name-1, literal-1, or the content of



the data item referenced by data-name-1. The association occurs at the time of
execution of an OPEN, SORT, or MERGE statement that referenced file-name-1,
according to the following rules:

a. The value literal-1, or the data—name-1's contents, are used as the external
file reference name.

b. This external file name may be a virtual device name, in which case the
external file name begins with a protocol-name:. The protocol-name
specifies the name of the virtual device driver provided by Elastic COBOL,
such as socket or printer.

c. Protocol-names are checked only at runtime, not at compile-time, as the
protocols present for various virtual devices vary between the various Elastic
COBOL runtimes. An Applet-specific runtime, for instance, may not possess
the server protocol, because there cannot be an applet server.

d. One-letter protocols are assumed to be drive letters and passed through
without redirection (e.g., C: or D:).

If the association cannot be made because the content of the data item
referenced by data-name-1 is not consistent with the specification for device-
name-1 or literal-1, the OPEN, SORT, or MERGE statement is unsuccessful.

FORMAT 1

The indexed format defines a file connector for an indexed file.
FORMAT 2

The relative format defines a file connector for a relative file.
FORMAT 3

The sequential format defines a file connector for a sequential file.

FORMAT 4
The sort-merge format defines a file connector for a sort-merge file.

SELECT Clause

File Types: INDEXED, RELATIVE, SEQUENTIAL, SORT-MERGE

General format
SELECT [[NOT] OPTIONAL] file-name-1

Syntax rules

File-name-1 must be a valid identifier name in COBOL. This is the file-name
referred to in all other documentation.

General rules

1. The SELECT clause assigns the internal, program source code name file-name-
1 to the external file reference.

2. The SELECT clause is required as the first clause in all file types.



3. If the file may not be present at time of OPEN, and the OPEN will not be
OUTPUT, then OPTIONAL should be specified; the OPTIONAL will allow the
OPEN to succeed for a missing file, but cause the first READ to fail.

4. NOT OPTIONAL is treated as commentary.

ASSIGN Clause

File Types: INDEXED, RELATIVE, SEQUENTIAL

General format
ASSIGN [TOJUSING] assign-name
Where assign-name is:
[VARYING assign-name
| DISK assign-name
| INPUT assign-name
| OUTPUT assign-name
| INPUT-OUTPUT assign-name
| SORT assign-name
| SORTMERGE assign-name
| MERGE assignh-name
| RANDOM assign-name
| CONSOLE assign-name
1
| Nonnumeric-literal-1
| DYNAMIC
| DISK
| PRINTER
| DISPLAY
| KEYBOARD
| INPUT
| OUTPUT
| INPUT-OUTPUT
| SORT
| SORT-MERGE
| EXTERNAL word-1
| ENVIRONMENT word-1
| Nonnumeric-literal-2 nonnumeric-literal-3
| PRINTER nonnumeric-literal-4
| DISPLAY nonnumeric-literal-5
| KEYBOARD nonnumeric-literal-5

Syntax rules
DYNAMIC specifies that a file dialog will prompt the user for the external filename.



DISK|INPUT|OUTPUTI|INPUT-OUTPUT|SORT|SORT-MERGE specifies that the
external filename will be constructed programmatically from the internal filename, or
specified later by a FILE-ID clause.

PRINTER resolves to "line:printer:graphics”.

DISPLAY resolves to "console:"

KEYBOARD resolves to "console:"
EXTERNAL|ENVIRONMENT word-1 resolves to "env:word-1".

Nonnumeric-literal-1 is the external filename; this external filename will first be
resolved through the Elastic COBOL protocols at runtime before the final external
filename is known, allowing virtual devices and file system information to be granted
to the runtime.

If nonnumeric-literal-3 is "DISK", then nonnumeric-literal-2 is the external filename.
If nonnumeric-literal-3 is "DISPLAY", then "console:nonnumeric-literal-2" is used as
the Wang style external filename.

PRINTER nonnumeric-literal-4 resolves to "line:printer:nonnumeric-literal-4"

DISPLAY|KEYBOARD nonnumeric-literal-5 resolves to "console:nonnumeric-literal-
5",

ACCESS MODE Clause

The ACCESS MODE clause specifies the order in which records are to be accessed
in the file.

General format
ACCESS MODE IS {DYNAMIC|RANDOM|SEQUENTIAL]

Syntax rules

1. The ACCESS MODE IS RANDOM clause shall not be specified for file-names
specified in the USING or GIVING phrase of a SORT or MERGE statement or
for a sequential file.

2. The DYNAMIC and RANDOM phrases shall not be specified for a sequential file.

General rules
1. If the ACCESS MODE clause is not specified, sequential access is assumed.

2. If the access mode is sequential, records in the file are accessed in the
sequence dictated by the file organization:

a. For sequential files this sequence is specified by predecessor-successor
record relationships established by the execution of WRITE statements when
the file is created or extended.

b. For relative files this sequence is the order of ascending relative record
numbers of existing records in the file.

c. Forindexed files this sequence is ascending within a given key of reference
according to the collating sequence of the file.



If the access mode is random:

a. For arelative file, the value of a relative key data item indicates the record to
be accessed.

b. For anindexed file, the value of a record key data item indicates the record
to be accessed.

If the access mode is dynamic, records in the file may be accessed sequentially
and/or randomly.

If the associated file connector is an external file connector, every file control
entry in the run unit that is associated with that file connector shall specify the
same access mode.

ALTERNATE RECORD KEY Clause

The ALTERNATE RECORD KEY clause specifies an alternate record key access
path to the records in an indexed file.

File Types: INDEXED

General format

ALTERNATE {RECORD KEY|RECORD-KEY} data-name-5|split-name-clause

[WITH {DUPLICATES IN ORDER}|{NO DUPLICATES}]

where split-name-clause is:

data-name-1 = data-name-2...
EXTERNAL = data-name-2...

Syntax rules

1.
2.

Data-name-1 may be qualified.

Data-name-1 shall be defined as a data item of category alphanumeric or
national within a record description entry associated with the file-name to which
the ALTERNATE RECORD KEY clause is subordinate. All occurrences of data-
name-2 shall be of the same category.

Data-name-1 shall not reference a group item that contains a variable-
occurrence data item.

Data-name-1 shall not reference an item whose leftmost character position
corresponds to the leftmost character position of the prime record key, or of
another alternate record key. This restriction does not apply in the case where
either key is specified using the SOURCE phrase.

If the indexed file contains variable-length records, each data-name-1 and data-
name-2 shall be contained within the first x character positions of the record,
where x equals the minimum record size specified for the file. (See RECORD
clause.)

If the file has more than one record description entry, data-name-1 and data-
name-2 need only be described in one of these record description entries.



7.

When defined as a split-name, data-name-1 is a hame usable only as a
keyname for START, this is the combination key of all of its data-name-2
components.

General rules

1.

An ALTERNATE RECORD KEY clause specifies an alternate record key for the
file with which this clause is associated.

Record-key-name-1 defines a record key consisting of the concatenation of all
occurrences of data-name-2 in the order specified.

The data description of data-name-1 or data-name-2 as well as their relative
location within a record shall be the same as that used when the file was
created. The number of alternate record keys for the file shall also be the same
as that used when the file was created.

The DUPLICATES phrase specifies that the value of the associated alternate
record key may be duplicated within any of the records in the file. If the
DUPLICATES phrase is not specified, the value of the associated alternate
record key shall not be duplicated among any of the records in the file.

If the file has more than one record description entry, data-name-1 or data-
name-2 need only be described in one of these record description entries. The
identical character positions referenced by data-name-1 or data-name-2 in any
one record description entry are implicitly referenced in keys for all other record
description entries of that file.

If the associated file connector is an external file connector, every file control
entry in the run unit that is associated with that file connector shall specify the
same data description entry for data-name-1 or data-name-2, the same relative
location within the associated record, the same number of alternate record keys,
and the same DUPLICATES phrase.

COMPRESSION Clause

Enable compression for the file.

General format

WITH COMPRESSION [CONTROL VALUE integer-1]

Syntax Notes

1.

The COMPRESSION request flag is passed to the runtime, but currently not
supported by any file system.

The integer-1 value is a percentage from 0 (none) to 100 (maximum), with the
value 1 being a special meaning default level of compression.

ENCRYPTION Clause

Enable encryption for the file.



General format
WITH ENCRYPTION

Syntax Notes

The ENCRYPTION request flag is passed to the runtime, but currently not
supported by any file system.

COMPRESSION Clause

Enable compression for the file.

General format
WITH COMPRESSION [CONTROL VALUE integer-1]

Syntax Notes

1. The COMPRESSION request flag is passed to the runtime, but currently not
supported by any file system.

2. The integer-1 value is a percentage from 0 (none) to 100 (maximum), with the
value 1 being a special meaning default level of compression.

CONTROL AREA Clause

CONTROL-AREA is an AS/400 COBOL clause, currently not supported.

General format
{CONTROL AREA | CONTROL-AREA} data-name-13

CURSOR COLUMN Clause

CURSOR COLUMN is Wang specific and treated as commentary.
File Types: SEQUENTIAL

General format
CURSOR COLUMN data-name-15

DATA SIZE Clause

The DATA SIZE clause is vendor specific clauses and treated as commentary.

General format
DATA SIZE integer

ENCRYPTION Clause

Enable encryption for the file.



General format
WITH ENCRYPTION

Syntax Notes

1. The ENCRYPTION request flag is passed to the runtime, but currently not
supported by any file system.

INDEX SIZE Clause

The INDEX SIZE clause is vendor specific clauses and treated as commentary.

General format
INDEX SIZE integer

NODISPLAY Clause

The NODISPLAY clause is vendor specific clauses and treated as commentary.

General format
NODISPLAY

PFKEYS Clause

PFKEYS is Wang specific and treated as commentary.
File Types: SEQUENTIAL

General format
PFKEYS data-name-14

FILE LOCKING Clause

Enable file and record locking for the file. This specifies the level of sharing allowed
for the file and its record contents. This definition of file locking and sharing is used
in conjunction with the file locking and sharing specified by the OPEN statement to
determine the final locking and sharing options for the file.

File Types: INDEXED, RELATIVE, SEQUENTIAL

General format
[[LOCK MODE IS {MANUAL|AUTOMATIC}

[WITH LOCK ON [MULTIPLE] {RECORD|RECORDS}]] |
LOCK MODE EXCLUSIVE [WITH MASS-UPDATE]]]
Mode Syntax

X: LOCK MODE EXCLUSIVE
XU: LOCK MODE EXCLUSIVE WITH MASS-UPDATE
LM: LOCK MODE MANUAL WITH LOCK ON MULTIPLE [RECORD|RECORDS]

L: LOCK MODE MANUAL WITH LOCK ON {RECORD|RECORDS}
A: LOCK MODE AUTO WITH LOCK ON RECORD




Key

Mode Syntax

AM: LOCK MODE AUTO WITH LOCK ON MULTIPLE [RECORD|RECORDS]
A: LOCK MODE AUTO

L: LOCK MODE MANUAL

S: SHARING WITH ALL OTHER

N: SHARING WITH NO OTHER

R: SHARING WITH READ ONLY

LMB: LOCK MODE MANUAL WITH LOCK ON MULTIPLE ROLLBACK
LB: LOCK MODE MANUAL WITH LOCK ON ROLLBACK

AB: LOCK MODE AUTO WITH LOCK ROLLBACK

Mode Name

X EXCLUSIVE

U MASS-UPDATE

M MULTIPLE

L MANUAL

A AUTOMATIC

B ROLLBACK

S SHARING ALL OTHERS

N SHARING NO OTHERS

R SHARING READ ONLY

General rules

1.

If the LOCK MODE clause is omitted from a file control entry, record locks have
no effect for the associated file connector.

If a file is open in the sharing with no other mode, the LOCK MODE clause has
no effect. Otherwise, the LOCK MODE clause has the effects described in the
general rules that follow.

If the AUTOMATIC phrase is specified, the lock mode is automatic. Records are
locked:

a. when any READ statement for which neither the IGNORING phrase nor the
NO LOCK phrase is specified is executed, and

b. when a REWRITE or WRITE statement for which the LOCK phrase is
specified is executed.

If the MANUAL phrase is specified, the lock mode is manual. Records locks are
obtained only when the LOCK phrase is explicitly specified on an I-O statement.

Single record locking is specified explicitly by the LOCK ON phrase without the
MULTIPLE phrase and implicitly when the LOCK MODE clause is specified with
the LOCK ON phrase omitted. Single record locking allows only one record of a
file to be locked at a given time through a single file connector. Completion of
the successful execution of a statement that locks a record releases any
previously locked record in that file for that file connector.

If the MULTIPLE phrase is specified in the LOCK ON phrase, then multiple
record locking is said to have been specified and a file connector is permitted to
have more than one record of a file locked. A file connector that has specified
multiple record locking for a file may hold a number of record locks for that file
simultaneously. This prevents other file connectors from accessing any member
of the set of locked records, but will not deny them access to records that are not
locked. The implementor shall specify the maximum number of record locks that
may be held by a file connector and the maximum number of record locks that



may be held by a run unit. Both of these maximum numbers shall be at least
one. Any I-O statement that attempts to obtain a record lock that would exceed
either limit is unsuccessful and receives an I-O status that indicates that
condition.

The setting of a record lock is part of the atomic operation of an |-O statement.
If MASS-UPDATE is specified, write caching is enabled.

EXCLUSIVE implies SHARING READ ONLY for INPUT files, SHARING NO
OTHERS for other files.

FILE STATUS Clause

The FILE STATUS clause specifies a data item that contains the status of an input-
output operation.

File Types: INDEXED, RELATIVE, SEQUENTIAL

General format
FILE STATUS data-name-4

Syntax rules
1. Data-name-1 may be qualified.

2. Data-name-1 shall be a two-character data item of the category alphanumeric,
defined in the working-storage or linkage section.

General rules

If the FILE STATUS clause is specified, the data item referenced by data-name-1 is
updated to contain the value of the I-O status for the file connector referenced by the
subject of the entry when the I-O status associated with that file connector is
updated as a result of an input-output statement.

NOTE - In the case where a file-name is global and data-name-1 is not, data-name-
1 is updated by references to file-name in contained programs even though data-
name-1 is a local name.

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of a file.
File Types: INDEXED, RELATIVE, SEQUENTIAL, SORT-MERGE

General format
ORGANIZATION {[BINARY|RECORD] SEQUENTIAL | RELATIVE | INDEXED | LINE
SEQUENTIAL | TRANSACTION}

General rules

1. The ORGANIZATION clause specifies the logical structure of a file. The file
organization is established at the time a file is created and may not subsequently
be changed.



The SEQUENTIAL phrase specifies that the file organization is sequential.
Sequential organization is a permanent logical file structure in which a record is
identified by a predecessor-successor relationship established when the record
is placed into the file. LINE SEQUENTIAL is a variant of SEQUENTIAL wherein
records are stored as lines of text; do not include non-DISPLAY data in LINE
SEQUENTIAL files.

The RELATIVE phrase specifies that the file organization is relative. Relative
organization is a permanent logical file structure in which each record is uniquely
identified by an integer value greater than zero, that specifies the records logical
ordinal position in the file.

The INDEXED phrase specifies that the file organization is indexed. Indexed
organization is a permanent logical file structure in which each record is
identified by the value of one or more keys within that record. When the
ORGANIZATION clause is not specified, sequential organization is implied.

TRANSACTION is an AS/400 COBOL specific organization, currently not
supported.

PADDING CHARACTER Clause

The PADDING CHARACTER clause specifies the character that is to be used for
block padding on sequential files.

File Types: SEQUENTIAL

General format

PADDING CHARACTER data-name-1|literal-1

Syntax rules

1.
2.
3.

Literal-1 shall be a one-character alphanumeric literal.
Data-name-1 may be qualified.

Data-name-1 shall be a one-character data item of category alphanumeric,
defined in the working-storage or linkage section.

General rules

1.

The PADDING CHARACTER clause specifies the character that is to be used
for block padding on sequential files. During input operations, any portion of a
block that exists beyond the last logical record and consists entirely of padding
characters shall be bypassed. During input operations, a logical record that
consists solely of padding characters shall be ignored. During output
operations, any portion of a block that exists beyond the last logical record shall
be filled entirely with padding characters.

If the PADDING CHARACTER clause is not applicable to the device type to
which the file is assigned, the creation or recognition of padding characters shall
not occur.

Literal-1 or the value of the data item referenced by data-name-1, at the time the
OPEN statement that creates the file is executed, is used as the value of the
padding character.



4. If the CODE-SET clause is specified for the file, conversion of the padding
character specified by literal-1 or the content of data-name-1 is established for
the file when the file is opened.

5. If the PADDING CHARACTER clause is not specified, the value used for the
padding character shall be defined by the implementor.

6. If the associated file connector is an external file connector, all PADDING
CHARACTER clauses in the run unit that are associated with that file connector
shall have the same specifications. If data-name-1 is specified, it shall reference
an external data item.

7. Padding character is treated as commentary.

PASSWORD Clause

PASSWORD is a vendor specific clause, treated as commentary.

General format
PASSWORD data-name-12

RECORD DELIMITER Clause

The RECORD DELIMITER clause indicates the method of determining the length of
a variable-length record on the external medium.

File Types: SEQUENTIAL

General format
RECORD DELIMITER IS STANDARD-1

Syntax rules
The RECORD DELIMITER clause may be specified only for variable-length records.

NOTE - There are three ways variable-length records may be specified:

1. The RECORD clause is not specified and the implementor has specified that
variable-length records are obtained in this circumstance.

2. The RECORD IS VARYING clause is specified.

3. The format 3 RECORD CONTAINS clause is specified with different from and to
values for Elastic COBOL file format.

4. RECORDING MODE V is specified.

General rules

1. The RECORD DELIMITER clause indicates the method of determining the
length of a variable-length record on the external medium. Any method used
shall not be reflected in the record area or the record size used within the
program.

2. If STANDARD-1 is specified, the external medium shall be a magnetic tape file.



3. If STANDARD-1 is specified, the method used for determining the length of a
variable-length record is that specified in ISO 1001.

4. If feature-name-1 is specified, the method used for determining the length of a
variable-length record is that associated with feature-name-1 by the
implementor.

5. If the RECORD DELIMITER clause is not specified, the method used for
determining the length of a variable-length record is specified by the
implementor.

6. At the time of a successful execution of an OPEN statement, the record delimiter
is the one specified in the RECORD DELIMITER clause in the file control entry
associated with the file-name specified in the OPEN statement.

7. If the associated file connector is an external file connector, all RECORD
DELIMITER clauses in the run unit that are associated with that file connector
shall have the same specifications.

8. Record delimiter is treated as commentary.

RECORDING MODE Clause

The RECORDING MODE clause sets the preferred storage to be fixed or variable.
File Types: INDEXED, RELATIVE

General format
RECORDING MODE F|FIXED|V|VARIABLE

Syntax rules
1. FIXED and F are treated the same.

2. VARIABLE and V are treated the same.

General rules
1. FIXED forces the runtime to store records in fixed format.

2. VARIABLE forces the runtime to store records in variable format.
RECORD KEY Clause

The RECORD KEY clause specifies the prime record key access path to the records
in an indexed file.

File Types: INDEXED
General format
{RECORD KEY|RECORD-KEY} data-name-1|split-name-clause

where split-name-clause is:
data-name-1 = data-name-2...
EXTERNAL = data-name-2...



Syntax rules

1.
2.

Data-name-1 may be qualified.

Data-name-1 shall reference a data item of category alphanumeric or category
national within a record description entry associated with the file-name specified
in this file control entry. All occurrences of data-name-2 shall be of the same
category.

Data-name-1 shall not reference a group item that contains a variable-
occurrence data item.

If the indexed file contains variable-length records, data-name-1 shall be
contained within the first n character positions of the record, where n equals the
minimum record size specified for the file. (See RECORD clause.)

Split-name-1 is a name usable only as a keyname for START, this is the
combination key of all of its data-name-2 components.

General rules

1.

The RECORD KEY clause specifies the prime record key for the file with which
this clause is associated. The values of the prime record key shall be unique
among records of the file.

If split-name is used, data-name-1 is a new identifier consisting of the
concatenation of all occurrences of data-name-2 in the order specified.

The data description of data-name-1 or data-name-2 as well as their relative
location within a record shall be the same as that used when the file was
created.

If the file has more than one record description entry, data-name-1 or data-
name-2 need only be described in one of these record description entries. The
identical character positions referenced by data-name-1 or data-name-2 in any
one record description entry are implicitly referenced as keys for all other record
description entries of that file.

If the associated file connector is an external file connector, all file description
entries in the run unit that are associated with that file connector shall specify the
same data description entry for data-name-1 or data-name-2 with the same
relative location within the associated record.

RELATIVE KEY Clause

The RELATIVE KEY clause identifies the data item that will contain the relative
record number for accessing a relative file.

General format

{RELATIVE|ACTUAL} KEY IS data-name-1

Syntax rules

1.
2.

Data-name-1 may be qualified.

Data-name-1 shall reference an unsigned integer data item whose description
does not contain the PICTURE symbol 'P'.



3. Data-name-1 shall not be defined in a record description entry subordinate to the
associated file-name.

General rules

1. All records stored in a relative file are uniquely identified by relative record
numbers. The relative record number of a given record specifies the record's
logical ordinal position in the file. The first logical record has a relative record
number of 1, and subsequent logical records have relative record numbers of 2,
3,4, ...

2. The relative key data item associated with the execution of an input-output
statement is the data item referenced by data-name-1; data-name-1 is used to
communicate a relative record number between the user and the mass storage
control system (MSCS).

3. If the associated file connector is an external file connector, every file control
entry in the run unit that is associated with that file connector shall contain a
RELATIVE KEY clause, data-name-1 shall reference an external data item, and
the RELATIVE KEY clause in each associated file control entry shall reference
that same external data item in each case.

RESERVE Clause

The RESERVE clause allows the user to specify the number of input-output areas
allocated.

File Types: INDEXED, RELATIVE, SEQUENTIAL

General format
RESERVE {integer-1|NO} ALTERNATE {AREA|AREAS}

General rules

If the RESERVE clause is specified, the number of input-output areas allocated is
equal to the value of integer-1.

RESERVE clause is treated as commentary.
SHARING Clause

The SHARING clause indicates that a file is to participate in file sharing and record
locking. It specifies the degree of file sharing (or non-sharing) to be permitted for a
file and whether record locks have an effect.

General format
SHARING WITH { ALL OTHER | NO OTHER | READ ONLY}

Mode Syntax

X: LOCK MODE EXCLUSIVE

XU: LOCK MODE EXCLUSIVE WITH MASS-UPDATE

LM: LOCK MODE MANUAL WITH LOCK ON MULTIPLE [RECORD|RECORDS]
L: LOCK MODE MANUAL WITH LOCK ON {RECORD|RECORDS}

A: LOCK MODE AUTO WITH LOCK ON RECORD




Mode Syntax
AM: LOCK MODE AUTO WITH LOCK ON MULTIPLE [RECORD|RECORDS]
A: LOCK MODE AUTO
L: LOCK MODE MANUAL
S: SHARING WITH ALL OTHER
N: SHARING WITH NO OTHER
R: SHARING WITH READ ONLY
LMB: LOCK MODE MANUAL WITH LOCK ON MULTIPLE ROLLBACK
LB: LOCK MODE MANUAL WITH LOCK ON ROLLBACK
AB: LOCK MODE AUTO WITH LOCK ROLLBACK
Key
Mode Name
X EXCLUSIVE
U MASS-UPDATE
M MULTIPLE
L MANUAL
A AUTOMATIC
B ROLLBACK
S SHARING ALL OTHERS
N SHARING NO OTHERS
R SHARING READ ONLY

General rules

The SHARING clause specifies the sharing mode to be used for the file unless it is
overridden by the SHARING phrase of the OPEN statement. This clause also
specifies whether record locks have an effect. Additional details are specified in
Sharing mode.

I-O-CONTROL Paragraph

The I-O-CONTROL paragraph specifies that memory areas associated with different
files are to be shared during file processing, record processing, or sort-merge
processing.

General format
I-O-CONTROL.

[
[same_clause]...
[rerun_clause]...
[multiple_file_clause]...
[apply_clause]...
[commitment_clausel]...

SAME Clause

The SAME clause specifies files for which memory areas are to be shared during file
processing, record processing, or sort-merge processing.



General format
Format 1 (file-area):

[ SAME AREA FOR file-name-1 {file-name-2}...] ...

Format 2 (record-area):

[ SAME RECORD AREA FOR file-name-1 {file-name-2}...] ...

Format 3 (sort-merge-area):

[SAME {SORT|SORT-MERGE} AREA FOR file-name-1 {file-name-2} ... ] ...

Syntax rules

1.
2.

10.

SORT and SORT-MERGE are equivalent.

File-name-1 and file-name-2 shall be specified in the FILE-CONTROL paragraph
of the program that contains this SAME clause.

File-name-1 and file-name-2 shall not reference an external file connector.

The files specified in a given SAME clause need not all have the same
organization or access.

A given file-name that represents a report file may be specified in one file-area
format SAME clause and shall not be specified in a record-area format or sort-
merge-area format SAME clause.

A given file-name that represents a sort or merge file may be specified in one
record-area format SAME clause and in one sort-merge-area SAME clause, and
shall not be specified in a file-area format SAME clause.

A given file-name that represents a file other than a report file or a sort or merge
file may be specified in one file-area format, in one record-area format, and in
one or more sort-merge-area format SAME clauses.

At least one file-name specified in a sort-merge-area format SAME clause shall
represent a sort or merge file.

If one or more file-names specified in a file-area format SAME clause are also
specified in a record-area format SAME clause, all of the file-names specified in
the file-area format SAME clause shall also be specified in the record-area
format SAME clause. Additional file-names not specified in the file-area format
SAME clause may be specified in the record-area format SAME clause.

If a file-name that represents a file other than a sort or merge file is specified in a
file-area format SAME clause and in one or more sort-merge-area format SAME
clauses, all of the file-names specified in that file-area format SAME clause shall
also be specified in those sort-merge-area format SAME clause(s).

General rules

1.

A file-area format SAME clause specifies that two or more files referenced by
file-name-1, file-name-2 are to use the same memory area during processing.
The area being shared includes all storage areas assigned to the files
referenced by file-name-1, file-name-2. No more than one of these files may be
in the open mode at a given time.

A record-area format SAME clause specifies that two or more files referenced by
file-name, file-name-2 are to share a memory area for processing the current
logical record. All of these files may be in the open mode at the same time,



except that only one file that is also specified in a file-area format SAME clause
may be open at that time. A logical record in the shared memory area is a
logical record of each file open in the output mode and of the most recently-read
file open in the input mode. This is equivalent to an implicit redefinition of the
area with records aligned on the leftmost character position.

3. Asort-merge-area format SAME clause specifies that memory is shared as
follows:

a. Any storage area allocated for the sorting or merging of a sort or merge file
specified in a sort-merge-area format SAME clause is available for reuse in
sorting or merging any of the other sort or merge files specified in that sort-
merge-area format SAME clause.

b. Storage areas assigned to files specified in a sort-merge-area format SAME
clause that do not represent sort or merge files may be allocated as needed
for sorting or merging the sort or merge files named in that sort-merge-area
format SAME clause.

c. Storage areas assigned to files specified in a sort-merge-area format SAME
clause other than sort or merge files do not share the same storage area
with each other.

4. During the processing of a SORT or MERGE statement that refers to a sort or
merge file named in a sort-merge-area format SAME clause, any non-sort and
non-merge files associated with file-names specified in that clause shall not be
in the open mode.

RERUN Clause

The SAME clause specifies files for which memory areas are to be shared during file
processing, record processing, or sort-merge processing.

General format
RERUN [ON {file-name-1]implementor-name-1}] EVERY

{integer-2 CLOCK-UNITS
| condition-name-1
| { {integer-1 RECORDS} | {{END OF] {REEL|UNIT}}} OF file-name-2}

Syntax rules
1. File-name-1 must be a sequentially organized file.
2. The END OF REEL/UNIT phrase may only be used if file-name-2 is a

sequentially organized file. The definition of UNIT is determined by each
implementor.

3. When either the integer-1 RECORDS phrase or the integer-2 CLOCK-UNITS
phrase is specified, implementor-name-1 must be given in the RERUN clause.

4. More than one RERUN clause may be specified for a given file-name-2 subject
to the following restrictions:

a. When multiple integer-1 RECORDS phrases are specified, no two of them
may specify the same file-name-2.



b.

When multiple END OF REEL or END OF UNIT phrases are specified, no
two of them may specify the same file-name-2.

5. Only one RERUN clause containing the CLOCK-UNITS phrase may be
specified.

General rules

1. The RERUN clause specifies when and where the rerun information is recorded.
Rerun information is recorded in the following ways:

2.

a.

If file-name-1 is specified, the rerun information is written on each reel or unit
of an output file and the implementor specifies where, on the reel or file, the
rerun information is to be recorded.

If implementor-name is specified, the rerun information is written as a
separate file on a device specified by the implementor.

There are seven forms of the RERUN clause, based on the several conditions
under which rerun points can be established. The implementor must provide at
least one of the specified forms of the RERUN clause.

a.

When either the END OF REEL or END OF UNIT phrase is used without the
ON phrase. In this case, the rerun information is written on file-name-2
which must be an output file.

When either the END OF REEL or END OF UNIT phrase is used and file-
name-1 is specified in the ON phrase. In this case, the rerun information is
written on file-name-1, which must be an output file. In addition, normal reel,
or unit, closing functions for file-name-2 are performed. File-name-2 may
either be an input or an output file.

When either the END OF REEL or END OF UNIT phrase is used and
implementor-name is specified in the ON phrase. In this case, the rerun
information is written on a separate rerun unit defined by the implementor.
File-name-2 may be either an input or output file.

When the integer-1 RECORDS phrase is used. In this case, the rerun
information is written on the device specified by implementor-name-1, which
must be specified in the ON phrase, whenever an interval of time, calculated
by an internal clock, has elapsed.

When the condition-name-1 phrase is used and implementor-name-1 is
specified in the ON phrase. In this case, the rerun information is written on
the device specified by implementor-name-1 whenever a switch assumes as
particular status as specified by condition-name-1. In this case, the
associated switch must be defined in the SPECIAL-NAMES paragraph of the
Configuration Section of the Environment Division. The implementor
specified when the switch status is interrogated.

When the condition-name-1 phrase is used and file-name-1 is specified in
the ON phrase. In this case, the rerun information is written on file-name-1,
which must be an output file, whenever a switch assumed a particular status
as specified by condition-name-1. In this case, as in paragraph f above, the
associated switch must be defined in the SPECIAL-NAMES paragraph of the
Configuration Section of the Environment Division. The implementor
specifies when the switch status is interrogated.



3. Elastic COBOL treats the RERUN clause as commentary.
MULTIPLE FILE TAPE Clause

The MULTIPLE FILE TAPE clause specifies the location of files on a multiple file
reel. The MULTIPLE FILE TAPE clause is an obsolete element in Standard COBOL
because it is to be deleted from the next revision of Standard COBOL.

General format
MULTIPLE FILE TAPE CONTAINS {file-name-1 [POSITION integer-1]} ...

General rules

1. The MULTIPLE FILE TAPE clause is required when more than one file shares
the same physical reel of tape. Regardless of the number of files on a single
reel, only those files that are used in the object program need be specified. If all
file-names have been listed in consecutive order, the POSITION phrase need
not be given. If any file in the sequence is not listed, the position relative to the
beginning of the tape must be given. Not more than one file on the same tape
reel may be open at one time.

2. Elastic COBOL treats the MULTIPLE FILE TAPE clause as commentary.
COMMITMENT Clause

The COMMITMENT CONTROL clause is AS/400 specific and not implemented; it
gives a warning if used.

General format
COMMITMENT CONTROL FOR file-name-1

APPLY Clause

The APPLY clause applies attributes to files.

General format
APPLY LOCK-HOLDING {ON file-name-1}...

General rules
Each file-name-1 is set to LOCK MANUAL MULTIPLE.



12. Data Division

The data division describes the data that the object program is to accept as input, to
manipulate, to create, or to produce as output. The data division is optional in a
COBOL source program.

The following is the general format of the sections in the data division and defines
the order of their presentation in the source program.

General format

[
DATA DIVISION.

[

CLASS-CONTROL.
[repository-paragraph-contents]
1

[
FILE SECTION.

[[file-description-entry|sort-merge-file-description-entry
|78-level-description-entry|record-description-entry]...
[inline-file-control]]...

1

[
SHARED-STORAGE SECTION.

[78-level-description-entry|record-description-entry]...
1

[
WORKING-STORAGE SECTION.

[78-level-description-entry|record-description-entry]...
1

[
LOCAL-STORAGE SECTION.

[78-level-description-entry|record-description-entry]...
1

[
LINKAGE SECTION.

[78-level-description-entry|record-description-entry]...
1

[
SCREEN SECTION.

[78-level-description-entry|record-description-entry]...

]



Syntax rules

1.

The CLASS-CONTROL, SHARED-STORAGE, LOCAL-STORAGE and
SCREEN sections are not in ANSI-85 COBOL. LOCAL-STORAGE and
SCREEN sections are present in the proposed COBOL-2002 standard.

General rules

1.

10.

11.

The sections are created in a particular order. A section may validly only
reference sections created prior. The order of creation is: SHARED-STORAGE,
WORKING-STORAGE, FILE,

LOCAL, LINKAGE, SCREEN.

SCREEN SECTION items may refer to LINKAGE section items, but only those
items passed by CONTENT rather than BY REFERENCE.

For deployment, it should be noted that each section generates its own Java
inner class, named program_name$Wrk.class, program_name$Lnk.class, etc.
These files must be deployed with the application as well as the main
program_name.class.

The CLASS-CONTROL section is identical in content to the REPOSITORY

paragraph in the ENVIRONMENT DIVISION and present only for increased
compatibility with Micro Focus. Refer to the REPOSITORY paragraph for all
information on CLASS-CONTROL.

SHARED-STORAGE contains data shared between all threads and all sessions
of the COBOL program. It is created only once per runtime, regardless of the
number of sessions and threads.

FILE contains the file definitions and record definitions for reading and writing
files. Each session has its own copy of WORKING-STORAGE. Each program,
thread, and recursion in a session has only one copy of WORKING-STORAGE.
The WORKING-STORAGE is released only upon program termination or upon a
CANCEL of the program.

WORKING-STORAGE contains the main working data for the program. Each
session has its own copy of WORKING-STORAGE. Each program, thread, and
recursion in a session has only one copy of WORKING-STORAGE. The
WORKING-STORAGE is released only upon program termination or upon a
CANCEL of the program.

LOCAL-STORAGE contains local working data for the program. Each session,
thread and recursion has its own copy of LOCAL-STORAGE. The LOCAL-
STORAGE is released upon program termination, GOBACK, or any activity
which returns control to a higher level of control.

LINKAGE contains data passed into the program through the PROCEDURE
DIVISION USING construct. Only data passed through the PROCEDURE
DIVISION USING in this section is valid.

SCREEN contains data for displaying and accepting screens, textual or
graphical. Elastic COBOL supports both textual and graphical screen sections.



Computer-independent data description

To make data as computer-independent as possible, the characteristics or
properties of data are described in the data division in a standard data format
expressed in terms of the appearance of graphic characters on a printed page of
infinite breadth, rather than the manner in which data is stored internally in the
computer or on a particular external medium. Numbers are described using the
decimal number system, regardless of the radix and representation used by the
computer; characters are described using characters from the COBOL character
set.

NOTE - The term graphic character has the meaning defined in ISO/IEC 10646-1:
1993, and is essential to the definition of standard data format. A COBOL standard
data format character corresponds to a graphic symbol only when the graphic
symbol is the visual representation of a graphic character, and not the visual
representation of a composite sequence.

Physical aspects of a file

The physical aspects of a file describe the data as it appears on the input or output
media and include such features as:

1. The grouping of logical records within the physical limitations of the file medium.
2. The means by which the file shall be identified.

Characteristics of a file

The conceptual characteristics of a file are the explicit definition of each logical entity
within the file itself. In a COBOL program, the input or output statements refer to
one logical record.

It is important to distinguish between a physical record and a logical record. A
COBOL logical record is a group of related information, uniquely identifiable, and
treated as a unit.

A physical record is a physical unit of information transferred to or recorded on an
output device or transferred from an input device. The size of a physical record is
hardware dependent and bears no direct relationship to the size of the file of
information contained on a device.

A logical record may be contained within a single physical unit; or several logical
records may be contained within a single physical unit; or a logical record may
require more than one physical unit to contain it. There are several source language
methods available for describing the relationship of logical records and physical
units. When a permissible relationship has been established, control of the
accessibility of logical records as related to the physical unit shall be provided by the
interaction of the object program on the JVM. In this document, references to
records means to logical records, unless the term 'physical record' is specifically
used.



The concept of a logical record is not restricted to file data but is carried over into
the definition of working storage. Thus, working storage is grouped into logical
records and defined by a series of record description entries.

When a logical record is transferred to or from a physical unit, any translation
required by the presence of a CODE-SET clause is accomplished. Padding
characters are added or deleted as necessary. None of the clauses used to
describe the data in the logical record have any effect on this transfer.

Record concepts

A record description consists of a set of data description entries that describe the
characteristics of a particular record. Each data description entry consists of a level-
number followed by a data-name, if required, followed by a series of independent
clauses, as required.

Levels

A level concept is inherent in the structure of a logical record. This concept arises
from the need to specify subdivision of a record for the purpose of data reference.
Once a subdivision has been specified, it may be further subdivided to permit more
detailed data referral.

The most basic subdivisions of a record, that is, those not further subdivided, are
called elementary items; consequently, a record is said to consist of a sequence of
elementary items, or the record itself may be an elementary item.

In order to refer to a set of elementary items, the elementary items are combined
into groups. Each group consists of a named sequence of one or more elementary
items. Groups, in turn, may be combined into groups of one or more groups. An
elementary item may belong to more than one group in a hierarchy of groups.

Level-numbers

A system of level-numbers shows the organization of elementary items and group
items. Since records are the most inclusive data items, level-numbers for records
start at 1. Less inclusive data items are assigned higher (not necessarily
successive) level-numbers not greater in value than 49. There are special level-
numbers, 66, 77, 78, and 88, that are exceptions to this rule. Separate entries are
written in the source program for each level-number used.

A group includes all group and elementary items following it until a level-number less
than or equal to the level-number of that group is encountered. All items that are
immediately subordinate to a given group item shall be described using identical
level-numbers greater than the level-number used to describe that group item.

Three types of entries exist for which there is no true concept of level. These are:

1. Entries that specify elementary items or groups introduced by a RENAMES
clause.

2. Entries that specify noncontiguous working storage and linkage data items.



3. Entries that specify condition-names.

Entries describing items by means of RENAMES clauses for the purpose of re-
grouping data items have been assigned the special level-number 66.

Entries that specify noncontiguous data items that are not subdivisions of other
items, and are not themselves subdivided, have been assigned the special level-
number 77.

Entries that specify condition-names to be associated with particular values of a
conditional variable have been assigned the special level-number 88.

Selection of character representation and radix

The value of a numeric item may be represented in either binary or decimal form,
depending on the equipment. In addition there are several ways of expressing
decimal. Since these representations are actually combinations of bits, they are
commonly called binary-coded decimal forms. The selection of radix is generally
dependent upon the arithmetic capability of the computer. If more than one
arithmetic radix is provided, the selection is dependent upon the specification of the
USAGE clause.

The selection of the means of representing character data is dependent on the
capability of the computer and its external media and on factors included in the
USAGE and PICTURE clauses. The method used in selecting the proper data form
is also provided to allow the programmer to anticipate and/or control the selection.

Alphanumeric and national functions shall be represented in alphanumeric
characters and national characters, respectively. The length of an alphanumeric or
national function in standard data format characters is determined by the definition
of the function. Integer and numeric functions may be used only in arithmetic
expressions. An integer or numeric function represents the value resulting from the
evaluation of the function without the restriction on composite of operands and/or
receiving data items.

The size of an elementary data item or a group item shall be the number of digit
positions or character positions in standard data format of the item. Synchronization
and usage may cause a difference between this size and that required for internal
representation.

Elastic COBOL uses two storage formats: internal and COBOL visible. Java objects
are used internally to efficiently represent most datatypes. These objects attempt to
use the most efficient form of data-manipulation for the data in question, and this
internal form varies from operation to operation. There is no difference in the
efficiency of operation between the various non-floating-point numeric types in
operation; any difference in efficiency is related to conversion between internal form
and COBOL visible form, which may vary from one JVM to another. Efficiency of
floating-point numeric depends on the floating-point capabilities of the operating
system and hardware, which may be different from the integer and fixed-point
capabilities, and on the conversion related below.

Efficiency of data handling is related to conversion between internal and COBOL
visible formats. This conversion is entirely automatic and irrelevant to COBOL
functionality, but can be related to the efficiency of the program. This conversion



occurs whenever the same underlying data is referred to in a different form from last
use. That is, if there is a group item G containing a numeric A and another numeric
B redefining A, then the first access to A entails conversion; all subsequent accesses
to A as a number require no conversion until accessed as either B or G. An access
to B or G will require A to converted to COBOL visible form and then to G or B's
internal form. A loop would be more efficient to do 100 references to A followed by
100 references to B rather than 100 interleaved references to A then B. Doing I/O
generally requires conversion. The internal and COBOL visible form of non-numeric
is generally identical, so no loss of efficiency in conversion occurs. This usage
matches typical COBOL usage in inputting data, performing a number of operations
on the data, and then outputting data; in this typical pattern, conversion occurs only
once at the start of the run and once at the end of the run.

Limitations of character handling

Each coded character of the character sets supported by Elastic COBOL is
processed at runtime as a single character position containing a single standard
data format character except in cases where this specification clearly describes
otherwise. If chosen as a computer's character set, ISO/IEC 10646-1 UTF-16 is
supported by COBOL as a UCS-2 implementation.

NOTE - UTF-16 is supported as a Level U implementation as defined in ISO/IEC
10646-1.

Algebraic signs

Algebraic signs fall into two categories: operational signs, which are associated with
signed numeric data items and signed numeric literals to indicate their algebraic
properties; and editing signs, which appear (e.g.) on edited reports to identify the
sign of the item.

The SIGN clause permits the programmer to state explicitly the location of the
operational sign. This clause is optional; if it is not used, operational signs will be
represented as TRAILING or as otherwise specified by the SPECIAL-NAMES
paragraph.

Editing signs are inserted into a data item through the use of the sign control
symbols of the PICTURE clause.

Standard alignment rules

The standard rules for positioning data within an elementary item depend on the
category of the receiving item. These rules are:

1. If the receiving data item is described as a fixed-point numeric item:

a. The data is aligned by decimal point and is moved to the receiving digit
positions with zero fill or truncation on either end as required.



b. When an assumed decimal point is not explicitly specified, the data item is
treated as if it has an assumed decimal point immediately following its
rightmost digit and is aligned as in rule 1a.

2. If the receiving data item is described as a floating-point numeric item, the
alignment of the data is according to decimal point.

3. If the receiving data item is a fixed-point numeric-edited data item, the data
moved to the edited data item is aligned by decimal point with zero fill or
truncation at either end as required within the receiving character positions of
the data item, except where editing requirements cause replacement of the
leading zeros.

4. If the receiving data item is alphabetic, alphanumeric, alphanumeric-edited,
national, or national-edited, the sending data shall be moved, after any specified
conversion, to the receiving character positions and aligned at the leftmost
character position in the data item with space fill or truncation to the right, as
required. If the JUSTIFIED clause is specified for the receiving item, alignment
differs as specified in JUSTIFIED clause.

Item alignment for increased object-code efficiency

Some computer memories are organized in such a way that there are natural
addressing boundaries in the computer memory (e.g., word boundaries, half-word
boundaries, byte boundaries). The way in which data is stored is determined by the
object program, and need not respect these natural boundaries.

The JVM has byte boundaries.

However, certain uses of data (e.g., in arithmetic operations or in subscripting) may
be facilitated if the data is stored so as to be aligned on these natural boundaries.
Specifically, additional machine operations in the object program may be required
for the accessing and storage of data if portions of two or more data items appear
between adjacent natural boundaries, or if certain natural boundaries bifurcate a
single data item.

Data items that are aligned on these natural boundaries in such a way as to avoid
such additional machine operations are defined to be synchronized.

Synchronization may be accomplished in two ways:
1. By use of the SYNCHRONIZED clause.

2. By recognizing the appropriate natural boundaries and organizing the data
suitably without the use of the SYNCHRONIZED clause.

The SYNCHRONIZED clause is treated as commentary.

Explicit and implicit attributes

Attributes may be implicitly or explicitly specified. Any attribute that has been
explicitly specified is called an explicit attribute. If an attribute has not been
specified explicitly, then the attribute takes on the default specification. Such an
attribute is known as an implicit attribute.



For example, the usage of a data item need not be specified, in which case a data
item's usage is display.

File section

The file section defines the structure of data, sort, and merge files. A file section is
shared among recursive and thread calls. Each session has its own file section.

General format
FILE SECTION.

[ { file-description-entry| sort-merge-file-description-entry }
[ 78-level-description-entry|record-description-entry ] ...]

Syntax rules
1. The file section may be specified in a program definition.

2. In afile description entries there shall be at least one record description entry.

General Rules

A data-item format or table format VALUE clause specified in the file section is
ignored. The initial value of a data item in the file section is undefined.

The initial value of a data item in the file section is defined to be the value given by
the VALUE clause; if unspecified, the value or default value of the default-byte is
used.

File description entry

In a COBOL program the file description entry (FD entry) represents the highest
level of organization in the file section. The file section header is followed by a file
description entry consisting of a level indicator (FD), a file-name, and a series of
independent clauses. The entry itself is terminated by a period.

The file description entry furnishes information concerning the physical structure,
identification, and the internal or external attributes of a file connector, of the
associated data records, and of the associated data items. The file description entry
also determines whether a file-name is a local name or a global name.

General format
Format 1 (sequential):
ED file-name-1
[IS EXTERNAL [BY literal-1] ]
[IS GLOBAL]
[BLOCK CONTAINS [integer-1 TO] integer-2 {RECORDS|CHARACTERS}]
[RECORD {CONTAINS integer-3 CHARACTERS}

| {IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]
[DEPENDING ON data-name-1]}

| {CONTAINS integer-6 TO integer-7 CHARACTERS}}]
[LINAGE IS {data-name-2|integer-8} LINES



[WITH EOOTING AT {data-name-3|integer-9}]

[LINES AT TOP {data-name-4|integer-10}]

[LINES AT BOTTOM {data-name-5|integer-11}] ]
[CODE-SET IS alphabet-name-1]
[DATA {RECORD|RECORDS]} {IS|ARE} identifier... ]
[LABEL {RECORD|RECORDS} {IS|ARE} {STANDARD|OMITTED]|identifier...}]
[BLOCK CONTAINS [integer TO] integer {RECORDS|CHARACTERS}]
[RECORDING MODE {{FIXED|F} | {VARIABLE|V}}]
[record-description-entry]...
[FILE-CONTROL inline-file-control . ]

where inline-file-control-entry is:
assign-clause
|access-clause
|padding-clause
|[reserve-clause
|[record-key-clause
[file-status-clause
|organization-clause
|[record-delimiter-clause
|[recording-mode-clause
|alternate-record-key-clause
|password-clause
|control-area-clause
|data-size-clause
lindex-size-clause
[nodisplay-clause
|Ipfkeys-clause
|cursor-column-clause
[file-locking-clause
|compression-clause
|lencryption-clause

Format 2 (relative-or-indexed):
ED file-name-1

[IS EXTERNAL [BY literal-1] ]

[IS GLOBAL]

[BLOCK CONTAINS [integer-1 TO] integer-2 {RECORDS|CHARACTERS}]
[RECORD {CONTAINS integer-3 CHARACTERS}

| {IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]
[DEPENDING ON data-name-1]}

| {CONTAINS integer-6 TO integer-7 CHARACTERS}}]
[DATA {RECORD|RECORDS} {IS|ARE} identifier... ]
[LABEL {RECORD|RECORDS} {IS|ARE} {STANDARD|OMITTED|identifier...}]
[BLOCK CONTAINS [integer TO] integer {RECORDS|CHARACTERS}]




[RECORDING MODE {{FIXED|F} | {VARIABLE|V}}]
[record-description-entry]...
[FILE-CONTROL inline-file-control . ]

where inline-file-control-entry is:
assign-clause
|access-clause
|padding-clause
|[reserve-clause
|[record-key-clause
[file-status-clause
|organization-clause
|record-delimiter-clause
|[recording-mode-clause
|alternate-record-key-clause
|password-clause
|control-area-clause
|data-size-clause
lindex-size-clause
Inodisplay-clause
|Ipfkeys-clause
|cursor-column-clause
[file-locking-clause
|compression-clause
|lencryption-clause

Syntax rules
ALL FORMATS
1. File-name-1 shall be specified in a file control entry.

2. The level indicator FD identifies the beginning of a file description entry and shall
precede file-name-1.

3. The clauses that follow file-name-1 may appear in any order.
4. The DATA RECORD clause is treated as commentary.

5. The LABEL RECORD clause is treated as commentary.
Format 1 is the file description entry for a sequential file.

FORMAT 2
Format 2 is the file description entry for a relative file or an indexed file.

General rules
ALL FORMATS
A file description entry associates file-name-1 with a file connector.

An inline file-control-entry is applied to the file currently being defined (FD) just as if
it had been applied in the FILE-CONTROL section in the ENVIRONMENT



DIVISION. All inline-file-control-entry clauses are identical to the corresponding
ENVIRONMENT DIVISION clause and are documented in the ENVIRONMENT
DIVISION chapter. The inline-file-control-entry clauses are available primarily to
allow more file information to be defined in the same location, allowing more locality
and allowing code generators targeting Elastic COBOL to generate file section code
alongside the file's record definition.

FORMAT 1

If the file description entry for a sequential file contains the LINAGE clause and the
EXTERNAL clause, the LINAGE-COUNTER data item is an external data item. If
the file description entry for a sequential file contains the LINAGE clause and the
GLOBAL clause, the special register LINAGE-COUNTER is a global name.

Sort-merge file description entry

The sort-merge file description entry furnishes information concerning the physical
structure pertaining to a sort or merge file. The clauses of a sort-merge file
description entry (SD entry) specify the size and the names of the data records
associated with a sort file or a merge file. The rules for blocking and internal storage
are peculiar to the SORT and MERGE statements. The sort-merge file description
entry is terminated by a period.

General format
SD file-name-1

[RECORD {CONTAINS integer-3 CHARACTERS}
| {IS VARYING IN SIZE [[FROM integer-4] [TO integer-5] CHARACTERS]
[DATA {RECORD|RECORDS} {IS|ARE} identifier... ]

Syntax rules
1. The level indicator SD identifies the beginning of the sort-merge file description
entry and shall precede file-name-1.

2. The clauses that follow file-name-1 are optional, and their order of appearance is
immaterial.

3. One or more record description entries shall follow the sort-merge file
description entry.

4. File-name-1 or any record description entry associated with file-name-1 shall not
be specified in an input-output statement other than following the word FROM or
the word INTO.

General rules
The number of characters is specified in terms of alphanumeric character positions.



Working-storage section

The working-storage section is located in the data division of a program. Data
described in the working-storage section is static data. The working-storage section
describes records and subordinate data items that are not part of data files.

Data elements in working storage that bear a definite hierarchical relationship to one
another shall be grouped into records according to the rules for formation of record
descriptions. Data elements in the working-storage section that bear no hierarchical
relationship to any other data item may be described as records that are single
elementary items. All clauses that are used in record descriptions in the file section
may be used in record descriptions in the working-storage section.

Items and constants in working storage that bear no hierarchical relationship to one
another need not be grouped into records, provided they do not need to be further
subdivided. Instead, they are classified and defined as noncontiguous elementary
items. Each of these items is defined in a separate data description entry that
begins with the special level-number 77.

The initial value of a data item in the working-storage section that is not a based
item may be specified by the data-item format or table format VALUE clause. Data
items of category object reference and class pointer are initialized as indicated in the
VALUE clause. Otherwise, the initial value of a data item is undefined. Otherwise,
the initial value of a data item is defined by the value or default value of the default-
byte compiler setting.

A data-item or table format VALUE clause specified in a record description entry
containing the EXTERNAL clause takes effect only during the initial loading of a
program or when the program is re-entered if its PROGRAM-ID specification
contains the INITIAL attribute.

A working-storage is shared among recursive and thread calls. Each session has its
own working-storage section.

General format
WORKING-STORAGE SECTION.

[77-level-description-entry|78-level-description-entry|record-description-entry]...

Local-storage section

The local-storage section is located in the data division of a program. Data
described in the local-storage section is automatic data.

Data elements in local storage that bear a definite hierarchical relationship to one
another shall be grouped into records according to the rules for formation of record
descriptions. Data elements in the local-storage section that bear no hierarchical
relationship to any other data item may be described as records that are single
elementary items. All clauses that are used in record descriptions in the file section
may be used in record descriptions in the local-storage section.

Items and constants in local storage that bear no hierarchical relationship to one
another need not be grouped into records, provided they do not need to be further
subdivided. Instead, they are classified and defined as noncontiguous elementary



items. Each of these items is defined in a separate data description entry that
begins with the special level-number 77.

The initial value of a data item in the local-storage section that is not a based item
may be specified by the data-item format or table format VALUE clause. Data items
of category object reference and class pointer are initialized as indicated in the
VALUE clause. Otherwise, the initial value of a data item is undefined.

A local-storage is not shared among recursive, thread or session calls. Each logical
view of the program has its own copy of the local-storage section.

General format
{LOCAL-STORAGE|BASED-STORAGE} SECTION.

[77-level-description-entry | record-description-entry | 78-level-description-entry] ...

Linkage section

A linkage section that appears in a program definition describes data items that are
referred to both by that element, when it is activated, and by the activating element.
The mechanism by which a correspondence is established between the data items
described in the linkage section and data items described in the activating element
is described in 14.3, General rules of the procedure division. In the case of index-
names, no such correspondence is established and index-names in the activated
and activating source elements always refer to separate indices.

In a program definition, the linkage section is meaningful if and only if the program is
to execute under the control of a CALL statement, and the CALL statement contains
a USING phrase. If a data item in the linkage section is accessed in a program that
is not a called program, the effect is undefined. If a program is activated by a run
time entity that is other than a COBOL run time entity, access to linkage section
items is meaningful if so designed by the calling entity.

A data-item format or table format VALUE clause specified in the linkage section is
ignored. The initial value of a data item in the linkage section is undefined.

A linkage section is not shared among recursive, thread or session calls. Each
CALL to a program has its own copy of the local-storage section. The data-items
are not fully realized until the CALL links the data-items to the CALLing data items,
as ordered by the PROCEDURE DIVISION USING parameters.

The set-up and tear-down time of the linkage section is comparatively large as it
must be re-instantiated and re-linked for each CALL. Include only items actually
referenced by the PROCEDURE DIVISION USING in the linkage section for the
best performance. Passing items BY CONTENT is faster than passing items BY
REFERENCE in Elastic COBOL.

General format
LINKAGE SECTION.

[77-level-description-entry | record-description-entry | 78-level-description-entry] ...



Syntax rules

1. Adata item defined in the linkage section of a source element may be
referenced within the procedure division of that source element if, and only if, it
satisfies one of the following conditions:

a. lItis an operand of the USING phrase of the procedure division header.

b. Itis subordinate to an operand of the USING phrase of the procedure
division header.

c. ltis defined with a REDEFINES or RENAMES clause, the object of which
satisfies the above conditions.

d. Itis subordinate to any item that satisfies the condition in rule 1c.

e. ltis a condition-name or index-name associated with a data item that
satisfies one of the above conditions.

Shared-storage section

The shared-storage section is used for data that must be shared between separate
sessions. Elastic COBOL has a session concept, allowing existing COBOL
programs which are suitable for a multi-process environment to be executed in a
multi-thread environment, where the session separation allows individual threads to
behave as if they were separate processes. The shared-storage section allows data
to be passed between these partitioned thread spaces.

The shared-storage section is allocated only once per runtime and is statically
allocated. It cannot be successfully CANCELled.

General format
SHARED-STORAGE SECTION.

[77-level-description-entry|record-description-entry|78-level-description-entry]...

[In Data description entry, additional lines for General format 1:]

[IS SPECIAL-NAMES {CRT STATUS | SCREEN CONTROL | EVENT STATUS |
CURSOR}]

[INDICATOR integer-1]

[GET-PROPERTY]

[SET-PROPERTY]

[LIKE like-identifier]

[FORMAT OF {DATE|TIME|TIMESTAMP} [IS format-literal] [SIZE IS size-integer]]

[EVENT

CLASS class-name-1

[ADD nonnumeric-literal-1]
[DELETE nonnumeric-literal-2]
[USING nonnumeric-literal-3]
[SET nonnumeric-literal-4]
[FOR nonnumeric-literal-5...]

END-EVENT]



Screen section

The screen section describes the screens to be displayed during terminal I-O. The
screen section describes screen records and subordinate screen items.

General format
SCREEN SECTION.

[screen-description-entry | 78-level-description-entry] ...

78-level description entry

A 78-level description entry is also known as a constant entry. A constant may be
used in place of a literal.

General format
78 constant-name-1 VALUE literal-1.

Syntax rules

1. Constant-name-1 may be used anywhere that a format specifies a literal of the
class and category of literal-1. In other than this entry, the effect is as if literal-1
were written where constant-name-1 is written.

Literal-1 shall not be a figurative constant.

Literal-1 shall not be a constant-name referencing a constant defined directly or
indirectly as constant-name-1.

General rules
The class and category of constant-name-1 is the same as that of literal-1.

Record description entry

A record description consists of a set of data description entries that describe the
characteristics of a particular record. Each data description entry consists of a level-
number followed by the data-name or FILLER clause, if specified, followed by a
series of independent clauses as required. A record description may have a
hierarchical structure and therefore the clauses used with an entry may vary
considerably, depending upon whether or not it is followed by subordinate entries.
The structure of a record description and the elements allowed in a record
description entry are explained in 13.2.4, Levels, and in Data description entry.

Data elements in the linkage section that bear a definite hierarchical relationship to
one another shall be grouped into records according to the rules for formation of
record descriptions. Data elements in the linkage section that bear no hierarchical
relationship to any other data item may be described as records that are single
elementary items.



77-level data description entry

Items in the linkage section, local-storage, and the working-storage section that bear
no hierarchical relationship to one another need not be grouped into records,
provided they do not need to be further subdivided. Instead, they are classified and
defined as noncontiguous elementary items. Each of these items is defined in a
separate data description entry that begins with the special level-number 77. A
data-name clause is required in each of these data description entries. Other
clauses shall be used to complete the data description entry according to the rules
for elementary data items.

Data description entry

A data description entry specifies the characteristics of a particular item of data. A
level 1 data description entry within the file, local-storage, working-storage, local-
storage, or linkage section determines whether the data record and its subordinate
data items have local names or global names.

Alevel 1 data description entry in the working-storage section determines the
internal or external attribute of the data record and its subordinate data items.

General format

Format 1 (data-description):
level-number {data-name-1|FILLER}

[REDEFINES data-name-2]

[IS EXTERNAL [BY literal-1] ]

[IS IDENTIFIED BY literal-1]

[IS GLOBAL]

[{PICTURE|PIC} IS character-string]
[usage-clause]

[SIGN IS [LEADING|TRAILING] [SEPARATE CHARACTER]]
[occurs-clause]

[ {SYNCHRONIZED|SYNC} [LEFT|RIGHT] ]

[ {JUSTIFIED|JUST} RIGHT]

[ BLANK WHEN {ZERO | ZEROES | ZEROS } ]
[VALUE IS literal-2 ]

where the following meta-language terms are described in the indicated paragraphs:

Term Paragraph
occurs-clause OCCURS clause
usage-clause USAGE clause

Format 2 (renames):
66 data-name-1 RENAMES data-name-2 [{THROUGH|THRU} data-name-3].

Format 3 (condition-name):
88 condition-name-1 {VALUE|VALUES} [IS|ARE]
{ literal-1 [{THROUGH|THRU} literal-7]} ...
[WHEN SET TO EALSE IS literal-8] .




Syntax rules
FORMAT 1

1.
2.

10.

11.

12.

Level-number may be 77 or 1 through 49.

The data-name-1 or FILLER clause, if specified, shall immediately follow the
level-number. The REDEFINES clause, if specified, shall immediately follow the
data-name-1 or FILLER clause if either is specified; otherwise, it shall
immediately follow the level-number. The remaining clauses may be written in
any order.

The EXTERNAL clause shall be specified only in data description entries in the
working-storage section whose level-number is 1.

The REDEFINES clause shall be specified in the same data description entry as
the EXTERNAL clause.

The GLOBAL clause may be specified only in data description entries whose
level-number is 1.

Data-name-1 shall be specified for any entry containing the GLOBAL or
EXTERNAL clause, or for record descriptions associated with a file description
entry that contains the EXTERNAL or GLOBAL clause.

The PICTURE clause shall not be specified for the subject of a RENAMES
clause or for an item whose usage is index, object reference or pointer. For any
other entry describing an elementary item, a PICTURE clause shall be specified
except as indicated in syntax rule 8.

The PICTURE clause may be omitted when a VALUE clause with an
alphanumeric literal or a national literal other than a figurative constant is
specified. In this case, a PICTURE with the following characteristics is implied:

a. If the literal is alphanumeric, 'PICTURE X(length)' is implied.
b. If the literal is national, 'PICTURE N(length)' is implied.

The term 'length’ is the number of character positions in the literal specified in
the VALUE clause.

The VALUE clause shall not be specified for data items of class index, object, or
pointer.

The SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO
clauses shall be specified only for an elementary data item.

If the USAGE clause is specified with the INTEGER or NUMERIC phrase, the
only other clauses permitted are level-number, and data-name, screen-name, or
FILLER.

The IDENTIFIED clause and EXTERNAL clause shall not be used for the same
data item.

FORMATS 2 AND 3
The words THRU and THROUGH are equivalent.

FORMAT 3

Format 3 is used for each condition-name. Each condition-name requires a
separate entry with level-number 88. The condition-name entries for a particular



conditional variable shall immediately follow the entry describing the item with which
the condition-name is associated. A condition-name may be associated with any
data description entry that contains a level-number except the following:

1. Another level 88 entry.
2. Alevel 66 entry.

3. Agroup containing items with descriptions including JUSTIFIED,
SYNCHRONIZED, or USAGE (other than usage display) clauses.

4. Adata item of the class index, object, or pointer.

General rules

1. Format 3 contains the name of the condition and the value, values, or range of
values associated with the condition-name.

2. Multiple level 1 entries subordinate to any given level indicator represent implicit
redefinition of the same area.

Screen description entry

Elastic COBOL supports two forms of screen section, textual and graphical.

Textual screen section support is for compatibility with existing screen section
implementations, based on the X/Open or COBOL 2002 standard.

Graphical screen section support is for graphical element handling in a similar
manner as the more traditional textual screen section. Graphical screen section
support is intended for ready conversion of textual screens to graphical screens.

Textual screen section and graphical screen section elements may be mixed
together on the same screen allowing for a more gradual approach to the creation of
a graphical user interface. A