
© 2015 Heirloom Computing Inc
All Rights Reserved

Elastic Transaction Platform

Programmer’s Guide

REVISION: FEBRUARY 2015

The contents of this manual may be revised without prior notice. No part of this
document may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the expressed written
permission of Heirloom Computing Inc.

Heirloom Computing has made every effort to ensure that this manual is correct
and accurate, but reserves the right to make changes without notice at its sole
discretion at any time.

Elastic Transaction Programmer’s Guide 1

Preface

This Programmer’s Guide provides guidelines for the usage of Elastic
Transaction Platform (ETP).

Elastic Transaction Platform is a robust enterprise sub-system permitting CICS
based COBOL applications to migrate and execute within the Java Enterprise
Edition (JEE) platform.

Elastic Transaction Platform integrates business applications into a cohesive,
flexible, enterprise solution that allows existing business processes to use and
exploit Java Enterprise based technologies. Elastic Transaction Platform
reduces time, complexity, and risk involved in building and redeploying CICS
COBOL business applications. The Elastic Transaction Platform preserves
existing business assets, reduces the total cost of ownership and increases
flexibility as offered through Enterprise Java Bean (EJB) transactions.

Elastic Transaction Platform provides traditional business sub-system services
in the Java Enterprise Application Server environment. These sub-system
services will function in conjunction with the popular application servers available
on a wide variety of operating platforms. The application infrastructure permits
enterprises to integrate business applications, and use an integrated
environment built using industry standards.

Trademarks

 IBM is a registered trademark of International Business Machines Inc.

 Oracle and Java are registered trademarks of Oracle and/or its affiliates.

 UNIX is a registered trademark licensed exclusively to X/Open Company
Limited.

 Linux is a registered trademark of Linus Torvalds.

 Windows is a registered trademark of Microsoft Corporation.

 Eclipse is a trademark of the Eclipse Foundation Inc.

 Other names may be trademarks of their respective owners.

Elastic COBOL Programmer’s Guide 2

Contents

ELASTIC TRANSACTION PLATFORM USAGE ... 5

JOURNALS .. 5
JOURNAL PROTOCOLS .. 6
TEMPLATES .. 9
QUEUES .. 10
QUEUE PROTOCOLS ... 10
SQL ... 12
FILE DEFINITIONS .. 13

BMS FIELD VALIDATION EXTENSIONS ... 16

FMASK .. 16
NMASK ... 18
EVENT ... 19
HTMLINPUT .. 20

ETP COMMAND SYNTAX .. 21

ABEND .. 22
ADDRESS ... 23
ADDRESS SET .. 25
ASKTIME ... 25
ASSIGN ... 26
BIF DEEDIT .. 36
CANCEL ... 38
CHANGE PASSWORD .. 38
CHANGE TASK ... 39
DEFINE COUNTER ... 40
DELAY ... 42
DELETE .. 44
DELETE COUNTER ... 45
DELETEQ TD .. 47
DELETEQ TS .. 47
DOCUMENT CREATE ... 48
DEQ .. 50
DOCUMENT INSERT .. 51
DOCUMENT RETRIEVE .. 54
DOCUMENT SET .. 55
DUMP TRANSACTION ... 56
ENDBR .. 58
ENQ .. 59
ENTER TRACENUM ... 61
EXTRACT CERTIFICATE .. 62
EXTRACT TCPIP ... 64
EXTRACT WEB ... 66
FORMATTIME ... 66
FREEMAIN .. 69
GET COUNTER ... 69
GETMAIN .. 72
JOURNAL .. 73

Elastic COBOL Programmer’s Guide 3

HANDLE ABEND .. 73
HANDLE AID .. 74
HANDLE CONDITION... 75
IGNORE CONDITION ... 76
LINK .. 76
LOAD .. 78
MONITOR ... 80
POP HANDLE ... 80
POST ... 81
PURGE MESSAGE .. 83
PUSH HANDLE .. 83
QUERY COUNTER .. 84
QUERY SECURITY .. 85
READ ... 87
READNEXT .. 90
READPREV .. 92
READQ TD ... 95
READQ TS.. 96
RECEIVE MAP .. 98
RECEIVE PARTN .. 99
RELEASE .. 100
RESETBR ... 100
RETRIEVE .. 102
RETURN .. 104
REWIND COUNTER ... 105
REWRITE ... 106
ROUTE .. 108
SEND CONTROL .. 110
SEND MAP .. 111
SEND PAGE ... 113
SEND PARTNSET ... 114
SEND TEXT .. 114
SIGNOFF ... 116
SIGNON .. 116
SPOOLCLOSE... 118
SPOOLOPEN INPUT ... 119
SPOOLOPEN OUTPUT ... 120
SPOOLREAD .. 122
SPOOLWRITE .. 123
START ... 124
SUSPEND .. 128
START ATTACH .. 128
START BREXIT ... 129
STARTBR ... 130
SUSPEND .. 132
SYNCPOINT ... 133
SYNCPOINT ROLLBACK.. 133
TRACE ... 134
UNLOCK .. 135
UPDATE COUNTER .. 136
UNLOCK .. 138
VERIFY PASSWORD ... 139
WAIT EXTERNAL ... 140

Elastic COBOL Programmer’s Guide 4

WAIT EVENT ... 141
WAIT JOURNALNAME ... 142
WAIT JOURNALNUM .. 142
WAITCICS .. 143
WAIT JOURNALNAME ... 144
WAIT JOURNALNUM .. 145
WEB ENDBROWSE COOKIE ... 146
WEB ENDBROWSE FORMFIELD .. 146
WEB ENDBROWSE HTTPHEADER .. 147
WEB EXTRACT ... 147
WEB READ COOKIE ... 151
WEB READ FORMFIELD ... 152
WEB READ HTTPHEADER .. 154
WEB READNEXT COOKIE ... 155
WEB READNEXT FORMFIELD .. 156
WEB READNEXT HTTPHEADER.. 157
WEB RECEIVE .. 158
WEB RETRIEVE .. 159
WEB SEND .. 160
WEB STARTBROWSE COOKIE .. 162
WEB STARTBROWSE FORMFIELD ... 162
WEB STARTBROWSE HTTPHEADER ... 163
WEB WRITE COOKIE.. 163
WEB WRITE HTTPHEADER .. 165
WRITE ... 166
WRITE JOURNALNAME ... 168
WRITE JOURNALNUM ... 169
WRITE JOURNALNAME ... 171
WRITE OPERATOR .. 172
WRITEQ TD ... 174
WRITEQ TS .. 176
XCTL .. 177

APPENDIX DFHVALUE(NAME) .. 179

DFHVALUE CONSTANTS ... 179
DFHVALUE(NAME) DEVICE COMMANDS ... 195

APPENDIX DFHRESP ... 197

APPENDIX EJB SETUP FILES ... 200

APPENDIX UNSUPPORTED COMMANDS ... 201

DISTRIBUTED PROCESSING SERVICE: ... 201
INTERVAL CONTROL: .. 201
BATCH DATA INTERCHANGE: ... 201
TCP/IP: .. 201
TRACE CONTROL: .. 201
TASK MANAGEMENT SERVICE: .. 2

Elastic COBOL Programmer’s Guide 5

Elastic Transaction Platform Usage

When compiling for the Elastic Transaction Platform (ETP) with Elastic
COBOL, the compiler option ‘-out:transaction’ must be included. Otherwise,
EXEC TRANSACTION or EXEC CICS statements will be not be recognized.

The following resources must be configured so that ETP can be used:

 Journals

 Templates

 Queues

 SQL

 File Definitions

Journals

The journal protocol mechanism is used by several services, including
Journal, Operator, and Trace.

A journal protocol provides a structured mechanism for writing to a
sequential data store. It may optionally provide asynchronous writes and a
reply mechanism. Note that not all journal protocols are available from all
environments. For instance, while a Dialog journal may be appropriate for
an operator message in an application, writing to the Dialog journal using
Journal commands in an EJB would at best, pause services, and at worst,
not function at all.

The protocol's class implementation is defined using the setup value
protocol.journal.name=classname. The default values for the protocols are
available in the table below. A protocol that does not support reply will
produce condition EXPIRED:100, while a protocol that does not support wait
will ignore it.

Protocol Supports Default Value
Reply Wait

protocol.journal.file N Y com.heirloomcomputing.etp.transaction.
journal.BinaryFile

protocol.journal.textfile N Y com.heirloomcomputing.etp.transaction.
journal.TextFile

protocol.journal.weblog
ic

N N com.heirloomcomputing.etp.transaction.
journal.WebLogic

protocol.journal.log4j N N com.heirloomcomputing.etp.transaction.
journal.Log4J

protocol.journal.sysout N Y com.heirloomcomputing.etp.transaction.
journal.Sysout

Elastic COBOL Programmer’s Guide 6

protocol.journal.syserr N Y com.heirloomcomputing.etp.transaction.
journal.Syserr

protocol.journal.dialog Y N com.heirloomcomputing.etp.transaction.
journal.Dialog

protocol.journal.queue N Y com.heirloomcomputing.etp.transaction.
journal.Queue

protocol.journal.binary N Y com.heirloomcomputing.etp.transaction.
journal.BinaryFile

protocol.journal.text N Y com.heirloomcomputing.etp.transaction.
journal.TextFile

protocol.journal.bea N N com.heirloomcomputing.etp.transaction.
journal.WebLogic

protocol.journal.apache N N com.heirloomcomputing.etp.transaction.
journal.Log4J

protocol.journal.stdout N Y com.heirloomcomputing.etp.transaction.
journal.Sysout

protocol.journal.stderr N Y com.heirloomcomputing.etp.transaction.
journal.Syserr

Journal Protocols

All Journal Protocols are in lower-case in setup. Each is followed by a colon
(:) and a referent. The referent is further information specific to the protocol.

In general, the Journal service uses the setup entry 'journal.journalname'.
The Operator service uses the setup entry 'operator.#' where # is the routing
number (2 by default). The Trace service uses the setup entry 'trace'.

Example:

journal.myjournal=sysout:

operator.2=myjournal

trace=myjournal

Protocols intended for logging destinations will interpret certain JTYPEID
codes specially. The following JTYPEID codes are interpreted special
wherever applicable (case insensitive):

JTYPEID Interpretation
*D Debug

*I Information

*W Warning

*E Error

*F Fatal Error

*T Trace

!C Operator Critical Level

!I Operator Immediate Level

!E Operator Eventual Level

!R Operator Reply Required

Elastic COBOL Programmer’s Guide 7

file:

The 'binary:' protocol is also available.

The file: protocol appends its entries to a binary file. The referent is the
filename.

The format of the binary entry is:

Field Name Size
Length of entry 4 bytes

User(0) / System(1) 4 bytes

Task Number 4 bytes

Transaction ID 4 bytes

Terminal ID 4 bytes

Timestamp (milliseconds) 8 bytes

JTYPEID 2 bytes

Length of user prefix 4 bytes

Length of user data 4 bytes

User Prefix Bytes given by length of user prefix

User Data Bytes given by length of user data

Example setup (sends output for journal 'mybin' to the file 'testmyfile.bin'):

journal.mybin=file:testmyfile.bin

textfile:

The 'text:' protocol.

The textfile: protocol appends its entries to a textfile.

The format of the text entry is two lines:

[JTYPEID] user-prefix: date-time (EIBTASKN taskn) (EIBTRMID term-id)
(EIBTRNSID trans-id):

user-data

Example setup (sends output for journal 'mytxt' to the file 'testmyfile.txt'):

journal.mytxt=file:testmyfile.txt

weblogic:

The 'bea:' protocol.

This protocol is available only when operating under Oracle WebLogic.

The weblogic: protocol sends its entries to the WebLogic logging
mechanism. In the WebLogic console, click the domain name in the
navigator, then 'View domain log' on the right for a brief view of the logged
messages. The full message file is available as well.

The format is determined by the current format of WebLogic output.

Example setup (sends output for journal 'myweb' to WebLogic catalog
'testmyfile.weblogic'):

Elastic COBOL Programmer’s Guide 8

journal.myweb=weblogic:testmyfile.weblogic

log4j:

The 'apache:' protocol.

The Log4J protocol sends its output to an Apache Log4J logger. The
referent is the logger name.

Apache Log4J has its own setup mechanisms and is generally not included
by default with the application server. Its jar file (such as log4j-1.2.7.jar)
must be added to either the application server itself or to the application. As
this is a general service, we recommend adding it to the application server
itself if possible.

The Log4J package itself will search for the file log4j.properties.

In addition to this default action, the setup property 'log4.properties' may be
set to a configuration file that will be read when the logger is opened. Only
use this if Log4J will be included with the application rather than the
application server.

sysout:

The ‘stdout:’ protocol.

The sysout protocol sends its output directly to the system output stream.
This is often the console for an application server.

Example setup (sends output for journal 'mysysout' to sysout):

journal.mysysout=sysout:

syserr:

The 'stderr:' protocol.

The syserr protocol sends its output directly to the system error stream.
This is often the console for an application server.

Example setup (sends output for journal 'mysyserr' to syserr):

journal.mysyserr=syserr:

dialog:

Dialog sends its messages to a dialog box. Dialog does support replies,
however it is generally not allowed under an application server environment.

Example setup (sends output for 'mydialog' to a dialog box):

journal.mydialog=dialog:

Elastic COBOL Programmer’s Guide 9

queue:

The queue protocol redirects the journal entry as a message through to a
queuing protocol. The referent is the symbolic queue name, which in turn
must be defined as a queue name in the queuing protocol format.

Example setup (sends output for 'myqueue' to the queue queueimpl):

journal.myqueue=queue:queueimpl

Templates

Templates are HTML files where all the information is not necessarily
present statically. They are stored as resources, and referenced by their
name. Templates may be buffered in memory for faster access.

The template must be setup using the syntax template.name=resource,
where resource is the actual resource filename.

Most text within a template is passed directly through to the destination.
However, certain commands (related to SSI) are supported.

<--#include file="filename_OR_template_name"-->

<--#include virtual="filename_OR_template_name"-->

<--#include template="template_name"-->

<--#include resource="filename"-->

The include commands include another template file in the processing on
the server. The text of the include command itself is removed from the
destination stream, replaced by the contents of the resource.

The include template command looks up another template in the setup by
template_name, referring to the resource indirectly.

The include resource command looks up the resource directly.

The file or virtual command looks up the resource as both template and
directly as a resource, using whichever it finds; this is slightly slower than
specifying the form directly.

<--#set var="name" value="value"-->

A template file has variables, the contents of which may be set and echoed.
The DOCUMENT SET and SYMBOLLIST options also set variables.

The set command sets a variable to a value; it will mainain that value within
the template until set again. It cannot, however, override the contents of a
variable already set by the DOCUMENT SET command.

<--#echo var="name"-->

&name;

Echo the contents of the variable to the destination. The variable may have
been set using DOCUMENT SET or SYMBOLLIST options or set using the
set command.

Elastic COBOL Programmer’s Guide 10

The & form is more convenient, but be aware that it overlaps with existing
entity references of HTML (such as < for a less-than sign). An
unrecognized & echo command will be passed through for further
interpretation by later stages, such as a web browser, allowing < to work
as expected so long as no variable has the same name.

Queues

Queues hold data in sequential order, generally adding items to one end of
the queue and retrieving them from the other end.

The Elastic Transaction Platform has a generalized queue mechanism,
available for the Transient Data Queue, Temporary Storage Queue and
Spool services. A queue is defined using a name and uri, where the uri
includes the protocol specifying the implementation of the queue. For
example, some queues are available only to the current facility's session and
other ones may be available even outside of the Transaction Platform.

Temporary and Transient queues may be written to and read from
immediately. Spools must be opened, used, and closed.

The most general form for setup of a Transient or Temporary queue is:

queue[.sysid_value].name=uri

[sysid.name=sysid_value]

where the uri is protocol:name, protocol specifying the implementation of the
queue, and name being passed to that protocol for further interpretation.

A spool queue for output is defined as:

spool[.userid[.class[.node]]]=uri

and a spool queue for input as:

spool[.userid[.class]]=uri

where the queue may be as well specified as desired.

Queue Protocols

session:destination

The session queue protocol has its scope only within the existing session
(conversation or pseudo-conversation), tied to a single terminal. It is never
shared between simultaneous tasks and it is safe to use exclusively without
the use of ENQ and DEQ.

This is the default queue protocol, if only the destination name is specified
without a protocol. An instance of a session queue is returned by TQ
commands using a queue not listed in the setup table.

Elastic COBOL Programmer’s Guide 11

jms:destination

The JMS queue uses Java Messaging Service for the queue. It uses any
available JMS implementation, such as Oracle MessageQ or MQ-Series /
WebSphere MQ. Its scope is defined by the JMS setup for the application
server, and it can span tasks, machines, clusters and more. The destination
is the JMS destination.

It uses additional table entries, each optional.

destination.factory=jndi_factory_name

destination.user=my_user_name

destination.password=my_password

If no factory is specified, then the default factory is used, if specified:

jms.default.factory=jndi_factory_name

jmstqt:destination

The JMS temporary queue with task scope uses Java Messaging Service for
the queue. It uses any available JMS implementation, such as Oracle
MessageQ or MQ-Series / WebSphere MQ. The queue is automatically
eliminated at the end of the task. The destination is the JMS destination.

It uses additional table entries, each optional.

destination.factory=jndi_factory_name

destination.user=my_user_name

destination.password=my_password

If no factory is specified, then the default factory is used, if specified:

jms.default.factory=jndi_factory_name

jmstqs:destination

The JMS temporary queue with session scope uses Java Messaging Service
for the queue. It uses any available JMS implementation, such as Oracle
MessageQ or MQ-Series / WebSphere MQ. The queue must be deleted to
eliminate its storage. The destination is the JMS destination.

It uses additional table entries, each optional.

destination.factory=jndi_factory_name

destination.user=my_user_name

destination.password=my_password

If no factory is specified, then the default factory is used, if specified:

jms.default.factory=jndi_factory_name

null:destination

The null destination discards its messages.

Elastic COBOL Programmer’s Guide 12

SQL

SQL (Structured Query Language) access within the Elastic Transaction
Platform must include setup information telling the platform where to find the
database connection.

There are two different setup methods, depending on whether or not the
SQL database is setup as a datasource in the application server. It is
always preferable to setup the datasource if possible. If not supported by
the particular application server, specify the SQL connection attributes on

the SQL tab of the Elastic Transaction Platform Deploy Settings within an
ETP Deployment Project

Each SQL database connection has its own name. The default name is
'default' and is used if no SET CONNECTION statement is issued. The
default connection is automatically established upon first EXEC SQL
command by a transaction. You can connect to other databases and even
multiple databases and switch the context between them. Use

EXEC SQL

 SET CONNECTION { :host-var | conn-name }

END-EXEC

Where host-var is a PIC X(16) variable defined in the transaction that holds
a database connection name or the unquoted conn-name that is a database
connection name.

Elastic COBOL Programmer’s Guide 13

The SQL tab of the ETP Deploy Settings file defines the database
connection names used by transactions. The editor inserts into the settings
property the file following values:

Setup:

sql.conn-name.datasource=datasource_name

sql.conn-name.user=user_name

sql.conn-name.password=user_password

Alternative Setup without datasource:

sql.conn-name.url=url_connection_string

sql.conn-name.driver=class_name

sql.conn-name.user=user_name

sql.conn-name.password=user_password

The user and/or password may be omitted if supported by the particular
database. The user_name is the user_name for connection to the database.
The password is only in server setup files and not visible to end clients.

One special SQL connection is of particular note, the 'file' connection. When
ETP file I/O is mapped to a relational database (see Elastic COBOL Getting
Started Guide) this connection name is used for the file control service
commands
(READ/READNEXT/READPREV/STARTBR/RESETBR/ENDBR/WRITE/RE
WRITE).

File Definitions

Elastic Transaction Platform file control is done through SQL. That is, file
access traditionally accessed in VSAM datasets is now done through JDBC
drivers to SQL database tables.

VSAM data must be converted to SQL using any available VSAM to SQL
converter. This may include custom programs written in CICS that read the
entire dataset and then write it to SQL, as well as third-party utilities used to
migrate data en masse.

The resulting SQL tables must include all the relevant information. FILLER
fields need not be maintained if they do not contain data necessary to the
containing group.

The mapping from the record structure to the SQL tables may vary
significantly; an XML file must be available in the project’s resource folder. It
must be the same name as the initial VSAM dataset and suffixed with .xml
and the setup must include the following entry:

file.dataset_name=jdbc:xml_descriptor_file.xml

During execution, when the platform accesses the SQL table, it does so
using the descriptions given in the XML file. The XML describes how to find

Elastic COBOL Programmer’s Guide 14

each data element within the record, including its offset, length, and storage
format.

Transcribing dataset descriptive information may be tedious and Elastic
COBOL also permits the option to place a $XFD command before the record
to be written. The command is $XFD FILE="filename.xml", where the $
character must be in the indicator column. This command will generate
correct information for the COBOL portion of the XML file and a good
approximation for the SQL portion. Since the SQL portion can have any
column names and storage, the file may need to be hand-edited to match
the names used by SQL. After the .xml file is produced, the $XFD command
is no longer needed and may be removed.

The $XFD command produces the xml descriptive file and places the result
in the listing folder. This file must be verified to correct any discrepancies in
the actual SQL usage, and the edited file should be moved into the
“resources folder”. This file is generated to a source folder to prevent
accidentally overwriting a hand-edited version of the file.

The root of the XML file is the dataset name. The only entries that matter
are the <column> entries. The <group> entries are included for information
and for easy usage of group items in the table; the group may be converted
to column and its individual columns removed. The column contains the
name of the item in the database, the offset, length and type (from
com.heirloomcomputing.ecs.api.Datatype) in the record, the sqltype for its
storage, and the table name in which it is stored. The offset, length and type
should not be changed.

The following sqltype values are recognized:

A ALPHANUMERIC (CHAR)

AV ALPHANUMERIC VARYING (VARCHAR)

B BINARY/IMAGE (BINARY)

BV BINARY/IMAGE VARYING (VARBINARY)

N NUMERIC INTEGER

NZ ZONED DECIMAL

N1 SINGLE PRECISION FLOATING POINT

N2 DOUBLE PRECISION FLOATING POINT

The column entry may also include an attribute named ridfld, which may be
set to true in order to mark it as the primary key. It may also be set to
duplicates in order to enable duplicate key checks if it is acting as an
alternate key. Alternate keys may be set to noduplicates in order to
suppress duplicate key checks. (The duplicate key check is computationally
expensive for databases and should be skipped if the program logic does
not require the DUPKEY condition.)

By default, the file control service uses a SQL connection named 'file' to
perform its access.

Elastic COBOL Programmer’s Guide 15

Example setup:

file.alpha=jdbc:alpha.xml

Example data record for reading or writing:

*$xfd file="alpha.xml"
01 my-record.
 05 surname pic x(20).
 05 first pic x(20).
 05 mi pic x.
 05 ss pic 9(9).
 05 age pic 9(3).

Example XML dataset definition alpha.xml:

<?xml version="1.0" standalone="yes"?>

<dataset name="alpha">
<!-- This file should be named after your dataset -->
 <group name="my_record" offset="0" length="53" usage="34" sqltype="B" table="alpha">
 <column name="surname" offset="0" length="20" type="32" sqltype="A" table="alpha"/>
 <column name="first" offset="20" length="20" type="32" sqltype="A" table="alpha"
ridfld="duplicates"/>
 <column name="mi" offset="40" length="1" type="32" sqltype="A" table="alpha"/>
 <column name="ss" offset="41" length="9" type="48" sqltype="NZ" table="alpha"/>
 <column name="age" offset="50" length="3" type="48" sqltype="NZ" table="alpha"/>
 </group>
</dataset>

Elastic COBOL Programmer’s Guide 16

BMS Field Validation Extensions

Elastic Transaction Platform provides additional BMS keywords that can be
used to provide client-side field formatting and validation. This can help to
reduce mainframe processing cycles.

FMASK

The FMASK (Fixed Mask) keyword is typically used for formatting input
fields such as phone numbers, dates, SSN, credit-cards etc. It can also be
used for formatting custom and/or general purpose field types.

General format

Format 1:

FMASK=(MASK)

Format 2:
FMASK=(MASK,CUSTOM-MASK)

Format 3:
FMASK=(MASK,CUSTOM-MASK,PLACEHOLDER)

General rules

All formats:

1. MASK is a string that may contain mask types. The predefined mask
types and their associated regular expressions are:

 9: [0-9] – a numeric character

 D: [0-9\.] – a decimal character

 X: [A-Za-z0-9] – a strictly defined alphanumeric character

 A: [A-Za-z] – an alphabetic character

 *: [.] – any permissible character

 B: [] – a blank space character

 S: [+-] – a sign character

 $: [$£€] – a common currency sign character

 ?: – any characters following are optional

Examples:

1. FMASK=(AAA-999)

 A field containing 7 characters.

Elastic COBOL Programmer’s Guide 17

 The first 3 characters entered must be alphabetic.

 The 4
th
 character will automatically be inserted as ‘-‘.

 The last 3 characters entered must be numeric.

2. FMASK=((999) 999-9999? x99999)

 A field representing a phone number containing 21 characters
(the ‘?’ is a function marker, not a character).

 All characters before ‘?’ are required.

 All characters after ‘?’ are optional.

Format 2:

1. CUSTOM-MASK is a regular expression that provides a custom mask for
any position in the MASK string that is marked with a ‘~’.

Example:

1. FMASK=(99~, [A-C])

 A field containing 3 characters.

 The first 2 characters entered must be numeric.

 The last character ‘~’ identifies a custom mask is to be applied.

 The CUSTOM-MASK is defined as the regular expression ‘[A-C]’,
which in this example means that the last character entered must
be either ‘A’ or ‘B’ or ‘C’.

Format 3:

1. PLACEHOLDER is a string that can be used to indicate to the user the
format of the input expected. The PLACEHOLDER is displayed in the
input field but does not affect the actual content of the input field.

Example:

1. FMASK=(99-99-9999,,MM-DD-YYYY)

 A field representing a date containing 10 characters (including the
‘-‘ separator characters).

 The field will accept only numeric input. The separator characters
‘-‘ are inserted automatically.

 The PLACEHOLDER is defined as the string ‘MM-DD-YYYY’.

 NOTE: The 2
nd

 parameter in this example is empty (this is the
CUSTOM-MASK parameter and has not been set).

Elastic COBOL Programmer’s Guide 18

NMASK

The NMASK (Numeric Mask) keyword is typically used for formatting integer
& decimal input fields such as general purpose numbers and currency.

Currency number masks automatically include thousand-separators.

General format

Format 1:

NMASK=()

Format 2:
NMASK=([INT | DEC],[NUM | CUR])

Format 3:
NMASK=([INT | DEC],[NUM | CUR],MINVALUE,MAXVALUE)

General rules

Format 1:

1. This is equivalent to NMASK=(INT,NUM). See Format 2.

Format 2:

1. The 1
st
 argument can be either INT (integer) or DEC (decimal).

2. The 2
nd

 argument can be either NUM (number) or CUR (currency).

Examples:

1. NMASK=(INT,NUM)

 All characters entered must be numeric.

 Input field is defined as an integer number (e.g. 12345), with no
decimal component and no thousand-separator.

2. NMASK=(DEC,CUR)

 All characters entered must be numeric or a decimal point.

 Input field is defined as decimal currency (e.g. 12,345.00).

 The ‘,’ thousand-separator is automatically inserted.

Format 3:

1. MINVALUE & MAXVALUE can be used to establish formatted minimum &
maximum values for the mask.

Example:

1. NMASK=(DEC,CUR,0.0000,999.9999)

Elastic COBOL Programmer’s Guide 19

 All characters entered must be numeric or a decimal point.

 Input field is defined as decimal currency and will accept any
value between 0.0000 and 999.9999

 Format implies a number < 1000 with up to 4 decimals permitted.

 The ‘,’ thousand-separator is automatically inserted.

EVENT

The EVENT keyword is used to perform custom input field validation via
JavaScript functions.

General format

Format 1:

EVENT=(myJavaScriptFunction,[FORM | FIELD],%V MSG,[arg1,arg2,…])

General rules

Format 1:

1. ‘myJavaScriptFunction’ is the name of the JavaScript function you want to
call. Any JavaScript function can be called. By default, ETP provides 3
functions:

 validateRange – tests if the field input is within a specified range.

 validateDate – tests if field input is a valid date.

 validateState – tests if field input is a valid US state.

2. The 2
nd

 argument can be either FORM (if testing the submit data from the
HTML form) or FIELD (if testing the data input to the HTML form).

3. The 3
rd
 argument can be used to pass a custom text message to the

function for processing. For example, the text message may be used to
display a specific error message in a modal dialog.

4. The %V substitution string in the 3
rd
 argument will be replaced by the

contents of the input field.

5. Subsequent arguments (i.e. arg1, arg2, …) are passed through “as is” to
the JavaScript function.

Examples:

1. EVENT=(validateRange,FORM,%V IS NOT A VALID OPTION. PLEASE
ENTER 1 THROUGH 5.,1,5)

 Upon submission of the FORM, the content (%V) is tested to see
if it is within the range of 1 through 5 (the range is specified by the
last 2 parameters that are passed to the ‘validateRange’ function.

 If the range is valid, nothing else will happen and processing will
continue.

Elastic COBOL Programmer’s Guide 20

 If the range is invalid, a modal dialog is displayed with the
message passed to the ‘validateRange’ function, and the cursor is
set to the location of the input field so the input can be corrected.

2. EVENT=(validateDate,FIELD,%V IS NOT A VALID DATE. PLEASE RE-
ENTER.,-)

 Upon exit of the input FIELD, the contents (%V) are tested to see
if they are a valid date.

 If a separator is being used to format the date, then this is passed
as the last argument to the ‘validateDate’ function.

 If the date is valid, nothing else will happen and processing will
continue.

 If the date is invalid, a modal dialog is displayed with the message
passed to the 'validateDate’ function, and the cursor is set to the
location of the input field so the input can be corrected.

3. EVENT=(validateState,FIELD,%V IS NOT A VALID STATE. PLEASE
RE-ENTER.)

 Upon exit of the input FIELD, the contents (%V) are tested to see
if they are a valid US state.

 If the state is valid, nothing else will happen and processing will
continue.

 If the state is invalid, a modal dialog is displayed with the
message passed to the 'validateState’ function, and the cursor is
set to the location of the input field so the input can be corrected.

HTMLINPUT

The HTMLINPUT keyword is used to inject a string into the input field’s
HTML INPUT tag. This can be useful for overriding existing attributes or
adding others.

General format

Format 1:

HTMLINPUT=STRING

General rules

Format 1:

1. STRING must be a valid HTML INPUT attribute.

Example:

1. HTMLINPUT=style=”text-align: center”

 This will override any other settings for this attribute.

Elastic COBOL Programmer’s Guide 21

ETP Command Syntax

Elastic Transaction Platform service commands supported include all IBM
CICS API commands:

Service Commands
Built-in Function BIF DEEDIT

Basic Mapping Support RECEIVE MAP, SEND MAP, SEND TEXT, SEND PAGE,
PURGE MESSAGE, ROUTE, RECEIVE PARTN, SEND
PARTNSET, SEND CONTROL

Counter DEFINE, GET, UPDATE, DELETE, REWIND, QUERY
COUNTER and DCOUNTER

Date/Time ASKTIME ABSTIME, FORMATTIME

Document DOCUMENT CREATE, INSERT, RETRIEVE, SET

Dump Control DUMP TRANSACTION

Execute Interface ADDRESS, HANDLE AID, HANDLE CONDITION, ASSIGN,
IGNORE CONDITION, PUSH HANDLE, POP HANDLE,
ADDRESS SET

File Control targeting
SQL/JDBC

READ, WRITE, REWRITE, DELETE, UNLOCK, STARTBR,
READNEXT, READPREV, ENDBR, RESETBR

Interval Control DELAY, POST, START, START ATTACH, START BREXIT,
RETRIEVE, CANCEL, WAIT EVENT

Journal JOURNAL, WRITE JOURNALNUM, WAIT JOURNALNUM,
WRITE JOURNALNAME, WAIT JOURNALNAME, WAIT
JOURNAL

Operator WRITE OPERATOR

Program Control LINK, XCTL, LOAD, RETURN, RELEASE, ABEND, HANDLE
ABEND

Recovery SYNCPOINT, SYNCPOINT ROLLBACK

Security SIGNON, SIGNOFF, VERYIFY PASSWORD, QUERY
SECURITY, CHANGE PASSWORD

Spool SPOOLOPEN, SPOOLREAD, SPOOLWRITE, SPOOLCLOSE

Storage Control GETMAIN, FREEMAIN

Task Control SUSPEND, ENQ, DEQ

Task Management CHANGE TASK

TCP/IP EXTRACT TCPIP, excluding EXTRACT CERTIFICATE

Temporary Storage WRITEQ TS, READQ TS, DELETEQ TS

Trace Control ENTER TRACENUM, ENTER, TRACE, excluding MONITOR

Transient Data Control WRITEQ TD, READQ TD, DELETEQ TD

Web WEB RECEIVE, WEB SEND, WEB READ HTTPHEADER,
WEB STARTBROWSE HTTPHEADER/FORMFIELD/COOKIE,
WEB READ/READNEXT
HTTPHEADER/FORMFIELD/COOKIE, WEB ENDBROWSE
HTTPHEADER/FORMFIELD/COOKIE, WEB WRITE, WEB
EXTRACT, WEB RETRIEVE

Restrictions

Application Programming Interface (API) commands are supported except
for:

Elastic COBOL Programmer’s Guide 22

 EXTRACT CERTIFICATE (TCP/IP)

 MONITOR (Trace)

 Batch Data Interchange service is not supported

 Distributed Processing service is not supported (APPC, direct
terminal control)

 Sub-system capabilities not supported by the ETP sub-system are
the System Programming Interface (SPI) commands and
conversational transactions.

ABEND

Program controlled user abnormal termination.

Syntax:

ABEND

[ABCODE(data-value)]

[CANCEL]

[NODUMP]

Service:

Program Control

Description:

An abnormal termination, or abend, propagates from the creation point
upwards through the stack until either a programmatic abend handler is
found or until the included abend handler is found. The included abend
handler creates a program dump so long as NODUMP is not specified.

Options:

ABCODE(data-value)

Data-value is the four-character abnormal termination code, visible in the
final abend handling dump and available to the abend handler if present.

CANCEL

Ignore any handlers specified by HANDLE ABEND commands.

NODUMP

Request no dump be made at final abend handling.

Elastic COBOL Programmer’s Guide 23

ADDRESS

Establish a pointer to the address of a system area.

Syntax:

ADDRESS

 [ACEE(pointer-ref)]

 [COMMAREA(pointer-ref)]

 [CSA(pointer-ref)]

 [CWA(pointer-ref)]

 [EIB(pointer-ref)]

 [TCTUA(pointer-ref)]

 [TWA(pointer-ref)]

Service:

Execute Interface Program

Setup:

cwa.jndi=cwa_jndi_name

The name of the CWA in JNDI is 'cwa' by default. This allows an alternate
JNDI storage name.

cwa.value

This provides an initial value for the CWA if none is currently present. If the
CWA is already established, this is ignored.

cwa.size

This provides the size of the CWA in bytes. This defaults to 256.

twa.size

This provides the size of the TWA in bytes. This defaults to 256.

eib.size

This provides the size of the EIB in bytes. This defaults to 256.

tctua.size

This provides the size of the TCTUA in bytes. This defaults to 256.

Options:

ACEE(pointer-ref)

Elastic COBOL Programmer’s Guide 24

Establishes linkage to the Access Control Environment Element, information
pertinent to the security manager. This may be null.

COMMAREA(pointer-ref)

Establishes linkage to the commarea. As the COMMAREA is already
passed to the program in the PROCEDURE DIVISION USING or initial
linkage, this is useful primarily for access from other called programs where
the commarea was not passed. This may be null.

CSA(pointer-ref)

As the Common System Area (CSA) has been made obsolete by the
ASSIGN command, an abend code of ASRD is thrown if access to the CSA
is attempted. Always use ASSIGN for access to information originally
available via the CSA.

CWA(pointer-ref)

Establishes linkage to the Common Work Area (CWA), user storage
common to all tasks within application server. It is stored as a JNDI element
named 'cwa'. As a direct pointer may not be shared in an application server
environment, a copy is taken when first referenced and the value of the
memory is restored to JNDI upon the task's end, if modified. As even with
direct pointers there would be race conditions, generally do not modify the
CWA on other than an occasional basis (such as once per day for a custom
date format). This may be null.

EIB(pointer-ref)

Establishes linkage to the Execute Interface Block (EIB). As the EIB is
already passed to the program in the PROCEDURE DIVISION USING or
initial linkage, this is useful primarily for access from other called programs
where the EIB was not passed.

Be aware that the method used for handling the EIB means that a variable
by the correct name must be present in the program in order to be set by the
EXEC command. When called directly from Java, the EIB value must be
passed as a parameter; the EIB block itself is not used.

TCTUA(pointer-ref)

Establishes linkage to the Terminal Control Table User Area, storage unique
to the virtual terminal session. This has little use in command-level
programming.

TWA(pointer-ref)

Establishes linkage to the Transaction Work Area (TWA), storage unique to
the current task. This has little use in command-level programming.

Conditions:

None

Elastic COBOL Programmer’s Guide 25

ADDRESS SET

Set the address of a pointer.

This command is generally not used in new code, as the COBOL SET verb
may be used directly.

Syntax:

ADDRESS

 [SET(data-area) USING(pointer-ref)]

 [SET(pointer-ref) USING(data-area)]

Service:

Execute Interface Program

Setup:

None

Options:

SET(data-area)

Specifies that the data-area's pointer is modified to be pointing to the using
parameter.

SET(pointer-ref)

Specifies that the pointer is modified to be pointing to the using parameter.

USING(pointer-ref)

Specifies the pointer source to be used by the SET option.

USING(data-area)

Specifies the data-area source's pointer to be used by the SET option.

Conditions:

 None

ASKTIME

Retrieve the current timestamp. The FORMATTIME command may be used
to transform the returned timestamp to human readable formats.

Elastic COBOL Programmer’s Guide 26

ASKTIME also sets EIBDATE and EIBTIME, if present in the calling
program.

Syntax:

ASKTIME

 [ABSTIME(data-area)]

 [MILLISECONDS]

Service:

Date Time

Setup:

None

Options:

ABSTIME

Retrieves current date/time in milliseconds since January 1, 1900 at 00:00.

MILLISECONDS

Do not artificially decrease accuracy to hundredths of a second for
compatibility.

Conditions:

None

ASSIGN

Assign the contents of a transaction platform value to a given data-area.
This is used for retrieving internal information safely. All options are for
returning data.

Syntax:

ASSIGN

[ABCODE(data-area)] [ABDUMP(data-area)]

[ABPROGRAM(data-area)] [ACTIVITY(data-area)]

[ACTIVITYID(data-area)] [ALTSCRNHT(data-area)]

[ALTSCRNWD(data-area)] [APLKYBD(data-area)]

Elastic COBOL Programmer’s Guide 27

[APLTEXT(data-area)] [APPLID(data-area)]

[ASRAINTRPT(data-area)] [ASRAKEY(cvda)]

[ASRAPSW(data-area)] [ASRAREG(data-area)]

[ASRASPC(cvda)] [ASRASTG(cvda)]

[BRIDGE(data-area)] [BTRANS(data-area)]

[CMDSEC(data-area)] [COLOR(data-area)]

[CWALENG(data-area)] [DEFSCRNHT(data-area)]

[DEFSCRNWD(data-area)] [DELIMITER(data-area)]

[DESTCOUNT(data-area)] [DESTID(data-area)]

[DESTIDLENG(data-area)] [DSSCS(data-area)]

[DS3270(data-area)] [EWASUPP(data-area)]

[EXTDS(data-area)] [FACILITY(data-area)]

[FCI(data-area)] [GCHARS(data-area)]

[GCODES(data-area)] [GMMI(data-area)]

[HILIGHT(data-area)] [INITPARM(data-area)]

[INITPARMLEN(data-area)] [INPARTN(data-area)]

[INVOKINGPROG(data-area)] [KATAKANA(data-area)]

[LANGINUSE(data-area)] [LDCMNEM(data-area)]

[LDCNUM(data-area)] [MAPCOLUMN(data-area)]

[MAPHEIGHT(data-area)] [MAPLINE(data-area)]

[MAPWIDTH(data-area)] [MSRCONTROL(data-area)]

[NATLANGINUSE(data-area)] [NETNAME(data-area)]

[NEXTTRANSID(data-area)] [NUMTAB(data-area)]

[OPCLASS(data-area)] [OPERKEYS(data-area)]

[OPID(data-area)] [OPSECURITY(data-area)]

[ORGABCODE(data-area)] [OUTLINE(data-area)]

[PAGENUM(data-area)] [PARTNPAGE(data-area)]

[PARTNS(data-area)] [PARTNSET(data-area)]

[PRINSYSID(data-area)] [PROCESSS(data-area)]

[PROCESSTYPE(data-area)] [PROGRAM(data-area)]

[PS(data-area)] [QNAME(data-area)]

[RESSEC(data-area)] [RESTART(data-area)]

[RETURNPROG(data-area)] [SCRNHT(data-area)]

[SCRNWD(data-area)] [SIGDATA(data-area)]

[SOSI(data-area)] [SPJAVAVERSION(data-area)]

[SPJAVAVENDOR(data-area)] [SPJAVAVENDORURL(data-area)]

[SPJAVAHOME(data-area)] [SPJAVACLASSVERSION(data-area)]

Elastic COBOL Programmer’s Guide 28

[SPJAVACLASSPATH(data-area)] [SPOSNAME(data-area)]

[SPOSARCH(data-area)][SPOSVERSION(data-area)]

[SPFILESEPARATOR(data-area)] [SPPATHSEPARATOR(data-area)]

[SPLINESEPARATOR(data-area)] [STARTCODE(data-area)]

[STARTIONID(data-area)] [SYSID(data-area)]

[TASKPRIORITY(data-area)] [TCTUALENG(data-area)]

[TELLERID(data-area)] [TERMCODE(data-area)]

[TERMPRIORITY(data-area)] [TEXTKYBD(data-area)]

[TEXTPRINT(data-area)] [TRANPRIORITY(data-area)]

[TWALENG(data-area)] [UNATTEND(data-area)]

[USERID(data-area)] [USERNAME(data-area)]

[USERPRIORITY(data-area)] [VALIDATION(data-area)]

[VERSIONMAJOR(data-area)] [VERSIONMINOR(data-area)]

[VERSIONSERVICE(data-area)] [VERSION(data-area)]

Service:

Execute Interface Program

Setup:

None

Options:

ABCODE(data-area)

4-character current abend code, blanks if no abend.

ABDUMP(data-area)

X"FF" if dump has been produced, X"00" otherwise.

ABPROGRAM(data-area)

8-character program name of abending program.

ACTIVITY(data-area)

BTS only, until Business Transaction Services supported throws condition
INVREQ.

ACTIVITYID(data-area)

BTS only, until Business Transaction Services supported throws condition
INVREQ.

ALTSCRNHT(data-area)

Alternate screen height for terminal.

Elastic COBOL Programmer’s Guide 29

ALTSCRNWD(data-area)

Alternate screen width for terminal.

APLKYBD(data-area)

X"FF" if APL keyboard feature, X"00" otherwise.

APLTEXT(data-area)

X"FF" if terminal keyboard has APL text feature, X"00" otherwise.

APPLID(data-area)

8-character applid of system owning transaction.

ASRAINTRPT(data-area)

Not supported. If supported, would return 8-character data-area containing
ILC and PIC of last abend of type ASRA, ASRB, ASRD or AICA.

ASRAKEY(cvda)

Returns the execution key of the previous ASRA-style interrupt. This could
return any of the following cvda values:

CICSEXECKEY

USEREXECKEY

NONCICS

NOTAPPLIC

The current release always returns NOTAPPLIC.

ASRAPSW(data-area)

8-character Program Status Word of last ASRA-style interrupt. The current
release always returns binary zeroes.

ASRAREG(data-area)

64-byte data area holding general registers 0…15 of last AREA-style
interrupt. The current release always returns binary zeroes, as this register
set is mainframe specific.

ASRASPC(cvda)

Returns the space in effect at the time of the previous ASRA-style interrupt.
This could return any of the following cvda values:

SUBSPACE
BASESPACE
NOTAPPLIC

The current release always returns NOTAPPLIC.

ASRASTG(cvda)

Elastic COBOL Programmer’s Guide 30

Returns the storage addressed at the time of the previous ASRA-style
interrupt. This could return any of the following cvda values:

CICS
USER
READONLY
NOTAPPLIC

The current release always returns NOTAPPLIC.

BRIDGE(data-area)

4-character TRANSID of bridge monitor transaction that issued the START
BREXIT TRANSID. command. Blanks are returned if this is not applicable.

BTRANS(data-area)

X"FF" if terminal support background transparency, X"00" otherwise.

CMDSEC(data-area)

X"FF" if command security defined for task, X"00" otherwise.

COLOR(data-area)

X"FF" if terminal supports extended color capability, X"00" otherwise.

CWALENG(data-area)

Length of the Common Work Area (CWA).

DEFSCRNHT(data-area)

Default screen height for terminal.

DEFSCRNWD(data-area)

Default screen width for terminal.

DELIMITER(data-area)

1-byte data-link control character for 3600. This will be one of:

X"80" end-of-text
X"40" end-of-block
X"20" inter-record separator
X"10" start of header
X"08" transparent input

DESTCOUNT(data-area)

Following BMS ROUTE, number of different terminal types in route list.
Within BMS overflow, relative overflow control number.

DESTID(data-area)

BDI only, until Batch Data Interchange is supported throws the condition
INVREQ. 8-character outboard destination.

Elastic COBOL Programmer’s Guide 31

DESTIDLENG(data-area)

BDI only, until Batch Data Interchange is supported throws the condition
INVREQ. Length of destination identifier in DESTID.

DSSCS(data-area)

X"FF" if facility is basic SCS data stream device, X"00" otherwise.

DS3270(data-area)

X"FF" if 3270 data stream device, X"00" otherwise.

EWASUPP(data-area)

X"FF" if Erase Write Alternative supported, X"00" otherwise.

EXTDS(data-area)

X"FF" if terminal supports 3270 extended data stream, X"00" otherwise.

FACILITY(data-area)

4-byte principal facility identifier.

FCI(data-area)

1-byte Facility Control Indicator.

GCHARS(data-area)

Graphic character set global identifier (GCSGID), 1…65,534.

GCODES(data-area)

Code page global identifier (CPGID), 1…65,534.

GMMI(data-area)

X"FF" if good morning message for terminal, X"00" otherwise.

HILIGHT(data-area)

X"FF" if terminal supports extended highlight capability, X"00" otherwise.

INITPARM(data-area)

60-character initialization parameter. If none, binary zeroes.

The setup for the initparm is:

program.<program_name>.initparm=<initparm_value>

INITPARMLEN(data-area)

Length of INITPARM. If no INITPARM, then zero.

INPARTN(data-area)

1- or 2-character name of most recent input partition.

INVOKINGPROG(data-area)

8-character name of program that used LINK or XCTL to transfer control to
current program. Blanks if at highest level.

KATAKANA(data-area)

Elastic COBOL Programmer’s Guide 32

X"FF" if facility supports katakana, X"00" otherwise.

LANGINUSE(data-area)

3-byte mnemonic code for language in use, corresponds to
NATLANGINUSE.

LDCMNEM(data-area)

2-byte LDC (Logical Device Code) mnemonic of destination that overflowed.

LDCNUM(data-area)

1-byte LDC numeric value of destination that overflowed.

MAPCOLUMN(data-area)

Origin column of most recently positioned map.

MAPHEIGHT(data-area)

Height of most recently positioned map.

MAPLINE(data-area)

Origin line of most recently positioned map.

MAPWIDTH(data-area)

Width of most recently positioned map.

MSRCONTROL(data-area)

X"FF" if terminal supports MSR (Magnetic Slot Reader), X"00" otherwise.

NATLANGINUSE(data-area)

1-byte mnemonic code for language in use, corresponds to LANGINUSE.

NETNAME(data-area)

8-character name of logical unit in VTAM network, if applicable.

NEXTTRANSID(data-area)

4-character name of next transaction, if available.

NUMTAB(data-area)

1-byte number of tabs required to position print element for 2980.

OPCLASS(data-area)

24-bits, BMS operator class for routing terminal messages.

OPERKEYS(data-area)

Supported for compatibility only, 8 null bytes.

OPID(data-area)

3-character operator ID.

OPSECURITY(data-area)

3-bytes of zeroes, this field is not used in current systems.

Elastic COBOL Programmer’s Guide 33

ORGABCODE(data-area)

4-byte original abend code.

OUTLINE(data-area)

X"FF" if terminal supports field outlining, X"00" otherwise.

PAGENUM(data-area)

Page number for overflow.

PARTNPAGE(data-area)

2-byte name of partition having caused page overflow.

PARTNS(data-area)

X"FF" if terminal supports partitions, X"00" otherwise.

PARTNSET(data-area)

1…6 character application partition set.

PRINSYSID(data-area)

4-character name by which the other system is known locally.

PROCESSS(data-area)

BTS only, until Business Transaction Services supported throws condition
INVREQ.

PROCESSTYPE(data-area)

BTS only, until Business Transaction Services supported throws condition
INVREQ.

PROGRAM(data-area)

8-character program name of the current program.

PS(data-area)

X"FF" is terminal has programmed symbols capability, X"00" otherwise.

QNAME(data-area)

4-character queue name that initiated the task, if task initiated by ATI.

RESSEC(data-area)

"X" if resource security checking in effect, blank otherwise.

RESTART(data-area)

X"FF" if restart of task has occurred, X"00" otherwise.

RETURNPROG(data-area)

8-character program name of the program to which the current program will
return.

SCRNHT(data-area)

Height of 3270 screen.

Elastic COBOL Programmer’s Guide 34

SCRNWD(data-area)

Width of 3270 screen.

SIGDATA(data-area)

4-byte inbound signal.

SOSI(data-area)

X"FF" is mixed DBCS is supported, X"00" otherwise.

SPJAVAVERSION(data-area)

System Property, the Java version.

SPJAVAVENDOR(data-area)

System Property, the Java vendor.

SPJAVAVENDORURL(data-area)

System Property, the Java vendor URL.

SPJAVAHOME(data-area)

System Property, the Java home.

SPJAVACLASSVERSION(data-area)

System Property, the Java class version.

SPJAVACLASSPATH(data-area)

System Property, the Java classpath.

SPOSNAME(data-area)

System Property, the Operating System name.

SPOSARCH(data-area)

System Property, the Operating System architecture.

SPOSVERSION(data-area)

System Property, the Operating System version.

SPFILESEPARATOR(data-area)

System Property, the file separator character, as in '/' or '\'.

SPPATHSEPARATOR(data-area)

System Property, the path separator character, as in ':' or ';'.

SPLINESEPARATOR(data-area)

System Property, the line separator, as in 13 10.

STARTCODE(data-area)

2-byte indicator specifying how task was started.

D DPL without SYNCONRETURN.

DS DPL with SYNCONRETURN.

Elastic COBOL Programmer’s Guide 35

QD Transient data queue.

S START without data.

SD START with data.

SZ FEPI START.

TD Terminal.

U User-attached.

STARTIONID(data-area)

1-byte station ID for 2980 terminal.

SYSID(data-area)

4 character system ID.

TASKPRIORITY(data-area)

Task priority, 0…255.

TCTUALENG(data-area)

Length of Terminal Control Table User Area (TCTUA).

TELLERID(data-area)

1-byte teller ID for 2980 terminal.

TERMCODE(data-area)

2-byte terminal code for terminal associated to task. The first byte is
terminal type, the second byte is model number.

TERMPRIORITY(data-area)

Terminal priority, 0…255. If separate priorities are not supported, 0 is
returned.

TEXTKYBD(data-area)

X"FF" is terminal supports TEXTKYBD, X"00" otherwise.

TEXTPRINT(data-area)

X"FF" if terminal supports TEXTPRINT, X"00" otherwise.

TRANPRIORITY(data-area)

Transaction priority, 0…255. If separate priorities are not supported, 0 is
returned.

TWALENG(data-area)

Length of Transaction Work Area (TWA).

UNATTEND(data-area)

X"FF" is terminal is in unattended mode, X"00" otherwise.

USERID(data-area)

Elastic COBOL Programmer’s Guide 36

ID of the user. Traditionally up to 8 characters, but it may be more
depending upon user id's allocated by the system. The assign will truncate if
necessary.

USERNAME(data-area)

Name of the user. Traditionally up to 20 characters, but it may be more
depending upon user names allocated by system. The assign will truncate if
necessary.

USERPRIORITY(data-area)

Operator priority, 0…255. If separate priorities are not supported, 0 is
returned.

VALIDATION(data-area)

X"FF" is terminal supports validation, X"00" otherwise.

VERSIONMAJOR(data-area)

Returns the major release version of the transaction platform.

VERSIONMINOR(data-area)

Returns the minor release version of the transaction platform.

VERSIONSERVICE(data-area)

Returns the service release version of the transaction platform.

VERSION(data-area)

Returns a text representation of the version number, as major.minor.service.

Conditions:

INVREQ RESP2

1 No signed in user present.

2 No BMS command in use.

3 No BDI, Batch Data Interchange in use.

4 The task was not started using ATI, Automatic
Transaction Initiation.

5 The task has no facility.

6 Not operating under BTS, Business Transaction
Services.

200 Not valid in DPL, Distributed Program Link.

NOTAUT
H

The requested assignment has not been
authorized, generally by the application server
itself.

BIF DEEDIT

Format alphanumeric data into numeric data. This function is obsolete.

Elastic COBOL Programmer’s Guide 37

It retains all numeric characters (digits 0 through 9), and right-aligns them
with zero-fill on the left. It does not preserve the decimal point or signed,
zoned digits.

Syntax:

BIF DEEDIT

Service:

Built In Function

Setup:

None

Options:

FIELD

The field is the data that is the alphanumeric source and numeric
destination.

LENGTH

The length is a binary number describing the length of the field. If not given,
the length of the FIELD variable is used.

Conditions:

None

Example:

01 bif-1 pic x(17).

move "ab1cd2ef3gh4ij5kl" to bif-1

exec transaction
 web send text("BIF FROM: " bif-1)
end-exec

exec transaction
 bif deedit field(bif-1)
end-exec

exec transaction
 web send text("BIF TO: " bif-1)
end-exec

Output:

BIF FROM: ab1cd2ef3gh4ij5kl
BIF TO: 00000000000012345

Elastic COBOL Programmer’s Guide 38

CANCEL

Cancel a previous interval control request. The request must be still waiting
to be performed in order to be successfully cancelled.

Syntax:

CANCEL

[REQID(data-value)

[SYSID(data-value)]

[TRANSID(data-value)]

]

Service:

Interval Control

Setup:

None

Options:

REQID(data-value)

Specifies request ID (1 to 8 characters) used with START, START ATTACH,
POST or DELAY command.

SYSID(data-value)

Specifies the system ID of the request to cancel, if used.

TRANSID(data-value)

Specifies the transaction ID of the request to cancel, if used.

Conditions:

NOTFND The REQID was not found.

CHANGE PASSWORD

This command is dependent upon the capabilities of the External Security
Manager.

Elastic COBOL Programmer’s Guide 39

Syntax:

CHANGE PASSWORD(data-value)

 NEWPASSWORD(data-value)

 USERID(data-value)

 [ESMREASON(data-area)]

 [ESMRESP(data-area)]

Service:

Security

Setup:

None

Options:

ESMREASON(data-area)

Retrieves the external security manager's reason code.

ESMRESP(data-area)

Retrieves the external security manager's response code.

NEWPASSWORD(data-value)

Specifies the new password, up to 8 characters.

PASSWORD(data-value)

Specifies the current password, up to 8 characters.

USERID(data-value)

Specifies the user id, up to 8 characters.

Conditions:

INVREQ Invalid request.

NOTAUTH Not authorized.

USERIDERR The user id is unknown

.

CHANGE TASK

Change a task's operating priority, yielding the CPU in the process.

Elastic COBOL Programmer’s Guide 40

Syntax:

CHANGE TASK

[PRIORITY(data-value)]

Service:

Task Management

Setup:

None

Options:

PRIORITY

-1 through 255.

-1 is a no operation, not yielding the CPU.

0 through 255 are priorities. These priorities are scaled to the JVM's levels
of priority, which are determined by Thread.MIN_PRIORITY through
Thread.MAX_PRIORITY, which is 1 through 10 at the time of this writing.

Conditions:

INVREQ RESP2

1 The PRIORITY is not within -1 through 255.

100 The PRIORITY option is not supported within the
current environment.

DEFINE COUNTER

Define a counter in the counter service. A counter must be defined before
its first use. All counters are referenced by name.

Counters are segregated by pools, with each pool having an independent
version of any named counters. The pool is selected by the program code.

Syntax:

DEFINE { COUNTER(name) | DCOUNTER(name) } [POOL(name)]

 [VALUE(data-value)]

 [MINIMUM(data-value)]

 [MAXIMUM(data-value)]

Elastic COBOL Programmer’s Guide 41

Service:

Counter

Setup:

pool.name=redirected_pool_name

If not specified, the pool name is the given name.

counter.jndi=counter_jndi_name

Specify the JNDI name of the external Counter service. The default is
'CounterService'.

The counter dispatches most of its work off to an external service so that the
counters will be shared between tasks.

Options:

COUNTER(name)

Specifies the name of the 32-bit signed counter.

DCOUNTER(name)

Specifies the name of the 64-bit unsigned counter.

POOL(name)

Specifies the name of the pool of counters. Each Counter service maintains
its own pools of counters.

VALUE(data-value)

Sets the initial value of the counter.

MINIMUM(data-value)

Specifies the minimum value for the counter.

MAXIMUM(data-value)

Specifies the maximum value for the counter.

Conditions:

INVREQ RESP2

202 Counter name already exists, cannot create
duplicate counter.

301 Server error.

302 No space in the pool to create the counter.

303 Unexpected error, such as connectivity loss.

304 Invalid pool.

305 Cannot connect to server.

Elastic COBOL Programmer’s Guide 42

306 Server abend.

308 This condition cannot occur (options table not
loadable).

309 This condition cannot occur (options table error).

310 This condition cannot occur (options user exit).

403 The pool name contains invalid characters.

404 The counter name contains invalid characters.

406 The increment is invalid; it cannot be larger than
the total range of the counter.

407 The minimum or maximum value is invalid;
negative, or maximum less than minimum

.

DELAY

Delay the task for a period of time in a CPU-efficient manner.

As delay loops may be optimized away, and the CPU should be free to
perform other activities during processing, a delay may be introduced using
this command.

INTERVAL or FOR specify a period of time, whereas TIME or UNTIL specify
the final time itself.

Note that most foreground sessions contain timeouts and will be terminated
if delayed too far.

Syntax:

DELAY

 [REQID(data-value)]

 [INTERVAL(hhmmss)]

 [FOR

[HOURS(data-value)]

[MINUTES(data-value)]

[SECONDS(data-value)]

]

 [TIME(hhmmss)]

 [UNTIL

 [HOURS(data-value)]

 [MINUTES(data-value)]

 [SECONDS(data-value)]

]

Elastic COBOL Programmer’s Guide 43

Service:

Interval Control

Setup:

None

Options:

REQID(data-value)

Specifies a request ID through which this command may be cancelled using
the CANCEL command. The request ID is valid only within the same
session.

INTERVAL(hhmmss)

Specifies an interval of time duration data-value. The format is a single
number with two-digits each hour, minute, second.

TIME(hhmmss)

Specifies a final time data-value. The format is a single number with two-
digits each hour, minute, second.

FOR

FOR specifies that HOURS, MINUTES and SECONDS refers to an interval
duration.

UNTIL

UNTIL specifies that HOURS, MINUTES and SECONDS refers to a final
time.

HOURS(data-value)

Specifies the number of hours, and it must be within 0..99.

MINUTES(data-value)

Specifies the number of minutes, and it must be within 0..59 if other HOURS

or SECONDS is specified.

SECONDS(data-value)

Specifies the number of seconds, and it must be within 0..59 if other HOURS

or MINUTES is specified.

Conditions:

EXPIRED The interval has already expired.

INVREQ RESP2

Elastic COBOL Programmer’s Guide 44

 4 Hours are invalid
5 Minutes are invalid.
6 Seconds are invalid

DELETE

Delete a record from a given file, interpreted as deleting a row from a
database.

Syntax:

DELETE FILE(data-area)

 [

TOKEN(data-area) |

RIDFLD(data-area) [KEYLENGTH(data-value)

[GENERIC [NUMREC(data-area)]]]

]

 [SYSID(data-area)]

 [NOSUSPEND]

 [RBA | RRN]

Service:

File Control

Setup:

file.<filename>=jdbc:<

xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Elastic COBOL Programmer’s Guide 45

Options:

FILE(data-area)

Specifies the name of the dataset, which must be included in setup as a
reference to jdbc:filename.xml.

TOKEN(data-area)

Specifies token used by READ UPDATE in order to associate this delete
with a prior read.

RIDFLD(data-area)

Specifies the record ID field, the key field.

KEYLENGTH(data-value)

Specifies the length of the key.

GENERIC

The key is generic, specified to the length of keylength.

NUMREC(data-area)

Returns the number of deleted records.

SYSID(data-area)

Specifies the system ID.

NOSUSPEND

Specifies that no waiting is to occur if records are locked.

RBA

Use RBA as the key field name.

RRN

Use RRN as the key field name.

Conditions:

FILENOTFOUN
D

The file was not found.

INVREQ An invalid request was issued.

IOERR An input/output file error occurred during the
operation

NOTFND The operation could not find the record.

DELETE COUNTER

Delete the named counter.

Elastic COBOL Programmer’s Guide 46

Syntax:

DELETE { COUNTER(name) | DCOUNTER(name) } [POOL(name)]

Service:

Counter

Setup:

pool.name=redirected_pool_name

If not specified, the pool name is the given name.

counter.jndi=counter_jndi_name

Specify the JNDI name of the Counter service. The default is
'CounterService'.

Options:

COUNTER(name)

Specifies the name of the 32-bit counter.

DCOUNTER(name)

Specifies the name of the 64-bit counter.

POOL(name)

Specifies the name of the pool of counters. Each Counter service maintains
its own pools of counters.

Conditions:

INVREQ RESP2

201 Named counter invalid.

301 Server error.

303 Unexpected error, such as connectivity loss.

304 Invalid pool.

305 Cannot connect to server.

306 Server abend.

308 This condition cannot occur (options table not loadable).

309 This condition cannot occur (options table error).

310 This condition cannot occur (options user exit).

403 The pool name contains invalid characters.

Elastic COBOL Programmer’s Guide 47

DELETEQ TD

Delete all data within a transient data queue.

Syntax:

DELETEQ TD QUEUE(name)

 [SYSID(name)]

Service:

Transient Data Control

Setup:

queue[.sysid_value].name=uri

[sysid.name=sysid_value]

Options

QUEUE(name)

Specifies the name of the transient data queue. The queue must be
defined.

SYSID(name)

Specifies the system ID. This is used to determine which queue definition is
used.

Conditions

SYSIDERR

An unknown sysid is being used.

QIDERR

1 There is no such queue definition.
2 The queue could not be obtained

INVREQ The queue could not be deleted. For instance, JMS queues (being
externally available) cannot be deleted.

 .

DELETEQ TS

Delete all data within a temporary storage queue.

Syntax:

DELETEQ TS {QUEUE(name) | QNAME(name)}

Elastic COBOL Programmer’s Guide 48

 [SYSID(name)]

Service:

Temporary Storage Control

Setup:

queue[.sysid_value].name[.main | .auxiliary]=uri

[sysid.name=sysid_value]

Options

QUEUE(name)

Specifies the name of the transient data queue. The queue must be
defined.

QNAME(name)

See QUEUE.

SYSID(name)

Specifies the system ID. This is used to determine which queue definition is
used.

Conditions

SYSIDERR An unknown sysid is being used

QIDERR

1 There is no such queue definition.
2 The queue could not be obtained.

DOCUMENT CREATE

Create a new document.

The document is stored in an internal format, manipulated with DOCUMENT
commands, and either sent to the web using WEB SEND or retrieved in final
form using DOCUMENT RETRIEVE.

Syntax:

DOCUMENT CREATE DOCTOKEN(data-area)

{{ TEXT(data-area) | BINARY(data-area) | FROM(data-area)} [LENGTH(data-
value)]} |

 TEMPLATE(name)

Elastic COBOL Programmer’s Guide 49

 FROMDOC(data-area)

 [DOCSIZE(data-area)]

 [HOSTCODEPAGE(name)]

 [SYMBOLLIST(data-area) [LISTLENGTH(data-value)]]

Service:

Document

Setup:

template.name=resource

Options:

DOCTOKEN(data-area)

Retrieves a 16-byte document token. The document token must then be
passed to other DOCUMENT commands to refer to the same document.

TEXT(data-area)

Specifies text to be inserted.

BINARY(data-area)

Specifies binary data to be inserted.

FROM(data-area)

Specifies a binary image of a previously retrieved document or template.

LENGTH(data-value)

Specifies the length of the TEXT, BINARY or FROM data.

TEMPLATE(name)

Specifies a template. The template must be defined.

FROMDOC(data-area)

Specifies that contents of another document are to be inserted. The data-
area is the 16-byte retrieved DOCTOKEN.

DOCSIZE(data-area)

Retrieves the estimated byte size of the document.

HOSTCODEPAGE(name)

Specifies the host's code page.

SYMBOLLIST(data-area)

Specifies a list of symbols and their values in URL-encoded form. Each list
agreement is a name, an equals sign (=), and a value. Each list element is
separated from each other list element by an ampersand (&).

Elastic COBOL Programmer’s Guide 50

The value must not contain a plain ampersand, as it is used for element
separation, and it must not contain a plain percentage character (%), as it is
used for embedding values. The % sign must be followed by two
hexadecimal characters, which form a single a character representing the
given ASCII value. So, %26 may be used to embed an ampersand (&), and
%25 may be used to embed a percentage character (%). A plus sign
represents a space, so a plus sign must be embedded as %2B. All other
characters are themselves.

Example:

SYMBOLLIST('first=George&last=Washington&fullname=George+Washington').

LISTLENGTH(data-value)

Specifies the length of the SYMBOLLIST.

Conditions:

INVREQ RESP2

1 The document being received FROM is in an
invalid format.

NOTFND RESP2

2 The FROMDOC is not found.

3 The TEMPLATE is not found.

7 The HOSTCODEPAGE is not found.

SYMBOLERR The symbol name is invalid.

TEMPLATERR The template is invalid.

DEQ

Release a resource from exclusive use that had been previously allocated by
ENQ.

This command is cooperative, so any other tasks wanting the same
resource must also allocate it for exclusive use using the same mechanism.

The default implementation uses JNDI. A resource is locked to a single task
by binding an object to the JNDI name 'lts_resource_<resourcename>',
where <resourcename> is the name of the resource to its given length. The
resource is unlocked by unbinding the object. (Nesting the enq/deq is left to
the individual task when locked between tasks.) The scope of the resource
allocation is therefore the scope of JNDI in use, either a single application
server or clustered application servers using clustered JNDI.

Syntax:

DEQ RESOURCE(data-area) [LENGTH(data-value)]

Elastic COBOL Programmer’s Guide 51

 [UOW | TASK | MAXLIFETIME(cvda)]

Service:

Task Control

Options:

RESOURCE(data-value)

Specifies the name of the resource as a data-area. This is always the
content of the specified resource, not the address of the resource. LENGTH
should always be specified, but the implicit length of the resource is used if
LENGTH is left unspecified.

LENGTH(data-value)

Specifies the length of the resource name. If left unspecified, an implicit
length of the resource data-area is used, not the address of the resource.
This must be between 1 and 255. It must be same as when allocated by
ENQ, or the resource will not have the same resource name as intended.

UOW

Specifies that the resource is to live until the end of the unit of work. This is
the default.

TASK

Specifies that the resource is to live until the end of the task.

MAXLIFETIME(cvda)

Specifies the maximum lifetime of the resource, either the CVDA for UOW or
TASK. The CVDA LUW is accepted as a synonym for UOW. Specify the
lifetime in this way if not constant, otherwise use the UOW or TASK tag
directly.

Conditions:

INVREQ

2 MAXLIFETIME was set to an invalid CVDA.

LENGERR

1 LENGTH was not between 1 and 255.

DOCUMENT INSERT

Insert document elements into a document.

Elastic COBOL Programmer’s Guide 52

Syntax:

DOCUMENT INSERT DOCTOKEN(data-area)

{{ TEXT(data-area) | BINARY(data-area) | FROM(data-area)} [LENGTH(data-
value)]} |

 SYMBOL(name)

 TEMPLATE(name)

 FROMDOC(data-area)

 BOOKMARK(name)

 [DOCSIZE(data-area)]

 [HOSTCODEPAGE(name)]

 [AT(name)]

[TO(name)]

Service:

Document

Setup:

template.name=resource

Options:

DOCTOKEN(data-area)

Specifies the document into which the element is inserted; this is obtained
originally from a DOCUMENT CREATE.

TEXT(data-area)

Specifies text to be inserted.

BINARY(data-area)

Specifies binary data to be inserted.

FROM(data-area)

Specifies a binary image of a previously retrieved document or template.

LENGTH(data-value)

Specifies the length of the TEXT, BINARY or FROM data.

SYMBOL(name)

Specifies a symbol. The symbol's current content value is inserted, not the
symbol itself.

TEMPLATE(name)

Elastic COBOL Programmer’s Guide 53

Specifies a template. The template must be defined.

FROMDOC(data-area)

Specifies that contents of another document are to be inserted. The data-
area is the 16-byte retrieved DOCTOKEN.

BOOKMARK(name)

Specifies that a bookmark is to be inserted. The bookmark may be used to
note the current location for later inserts.

DOCSIZE(data-area)

Retrieves the estimated byte size of the document.

HOSTCODEPAGE(name)

Specifies the host's code page.

AT(name)

If TO is not specified, then the insertion occurs immediately after the
bookmark name.

If TO is specified, then the contents between AT and TO bookmarks are
removed, being replaced by this insertion element.

TO(name)

If AT is not specified, then the insertion occurs immediately before the
bookmark name.

If AT is specified, then the contents between AT and TO bookmarks are
removed, being replaced by this insertion element.

Conditions:

DUPREC A duplicate bookmark is being defined.

 INVREQ RESP2

0 The bookmark TO is incorrectly before the bookmark
AT.

1 The document being received FROM is in an invalid
format.

2 The bookmark is invalid.

NOTFND RESP2

1 The DOCUMENT is not found

2 The FROMDOC is not found.

3 The TEMPLATE is not found

4 The SYMBOL is not found.

5 The AT bookmark is not found.

6 The TO bookmark is not found.

7 The HOSTCODEPAGE is not found.

Elastic COBOL Programmer’s Guide 54

TEMPLATER
R

The template is invalid.

DOCUMENT RETRIEVE

Retrieve a copy of a document.

Syntax:

DOCUMENT RETRIEVE DOCTOKEN(data-area)

 INTO(data-area)

 LENGTH(data-area)

 MAXLENGTH(data-value)

 CLNTCODEPAGE(name)

 DATAONLY

Service:

Document

Setup:

None

Options:

DOCTOKEN(data-area)

Specifies the document token, the document to retrieve.

INTO(data-area)

Returns the data itself.

LENGTH(data-area)

Returns the length of the data.

MAXLENGTH(data-value)

Specifies the maximum length of data expected.

CLNTCODEPAGE(name)

Specifies the client code page.

DATAONLY

Return only data, not meta-data such as internal bookmarks.

Elastic COBOL Programmer’s Guide 55

Conditions:

LENGERR RESP2

1 MAXLENGTH is less than or equal to zero.

2 The document is truncated because the buffer is too
small.

NOTFND RESP2

1 The document is not found.

7 The client codepage is invalid.

DOCUMENT SET

Add or set symbols within the specified document.

Syntax:

DOCUMENT SET

 DOCTOKEN(data-area)

 {

{ SYMBOL(name) [NAMELENGTH(data-value)] VALUE(data-area) } |

{ SYMBOLLIST(data-area) }

}

LENGTH(data-value)

Service:

Document

Options:

DOCTOKEN(data-area)

Specifies a document token, created using earlier document commands.

SYMBOL(name)

Specifies a symbol name. The name is whitespace trimmed when used.

NAMELENGTH(data-value)

Specifies the length of the symbol name. (The default is the whitespace
trimmed length.)

SYMBOLLIST(data-area)

Specifies a list of symbols. The list is of the form name=value, separated by
semicolons (;). The values are restricted, such that a percent sign followed

Elastic COBOL Programmer’s Guide 56

by two hexadecimal digits is an ASCII character, ampersand is not allowed
(replaced by %26), and pluses (+) represent spaces (replaced by %2B).

LENGTH(data-value)

Specifies the length of the symbol value or of the symbol list.

VALUE(data-area)

Specifies the value of the symbol.

Conditions:

NOTFND RESP2

1 The document does not exist.

SYMBOLERR RESP2

0 Neither SYMBOL nor SYMBOLLIST was specified,
or if specified were invalid.

DUMP TRANSACTION

Dump information about the transaction programmatically. A dump occurs
automatically upon an abend.

The dump is distributed among the various active services, so which options
are actually recognized depends upon the implementation of the other
services.

Syntax:

DUMP TRANSACTION DUMPCODE(name)

 [COMPLETE]

[FROM(data-area) [LENGTH(data-value) | FLENGTH(data-value)]

[TRT]

[SEGMENTLIST(data-area) LENGTHLIST(data-area)
NUMSEGMENTS(data-area)]

[TASK]

[STORAGE]

[PROGRAM]

[TERMINAL]

[TABLES]

[DCT]

[FCT]

[PCT]

Elastic COBOL Programmer’s Guide 57

[PPT]

[SIT]

[TCT]

Service:

Dump Control

Setup:

None

Options:

DUMPCODE(name)

Specify a dumpcode signature for the dump.

COMPLETE

Include all information in the dump.

FROM(data-area)

Specify a data-area to be dumped along with the remainder of the dump.

LENGTH(data-value)

The length of the FROM.

FLENGTH(data-value)

The length of the FROM.

SEGMENTLIST(data-area)

LENGTHLIST(data-area)

NUMSEGMENTS(data-area)

Segment dumping is not currently supported.

This specifies that there are NUMSEGMENTS segments, each listed in
SEGMENTLIST with a length specified by LENGTHLIST.

TASK

Storage associated with task.

STORAGE

Dump storage.

PROGRAM

Program storage areas.

TERMINAL

Elastic COBOL Programmer’s Guide 58

Storage associated with terminal.

TABLES - DCT, FCT, PCT, PPT, SIT, TCT.

DCT

Destination Control Table.

FCT

File Control Table.

PCT

Process Control Table.

PPT

Processing Program Table.

SIT

System Initialization Table.

TCT

Terminal Control Table.

ENDBR

End the browsing operation on a file. The browse must previously have been started
using STARTBR.

Syntax:

ENDBR

{FILE(data-value) | DATASET(data-value)}

[REQID(data-value)]

[SYSID(data-value)]

Service:

File Control

Setup:

See file setup under READ.

Options

FILE(data-value)

Elastic COBOL Programmer’s Guide 59

Specifies the filename. The filename must be setup to point to an .xml file
descriptor.

DATASET(data-value)

Specifies the filename, just as does FILE. FILE is preferred.

REQID(data-value)

Specifies a previously specified request identifier to control multiple browses.

SYSID(data-value)

Specifies the system ID, 1 to 4 characters, of the browse operation.

Conditions:

FILENOTFOUND The file was not found.

ILLOGIC Logical error.

INVREQ Invalid request.

IOERR Input/Output error.

ISCINVREQ Remote system error.

NOTAUTH Resource security check failed.

SYSIDERR System ID error.

ENQ

Acquire a resource for exclusive use.

This command is cooperative, so any other tasks wanting the same
resource must also allocate it for exclusive use using the same mechanism.

As this command by definition forces tasks to wait or serialize their actions, it
should be avoided wherever possible.

The default implementation uses JNDI. A resource is locked to a single task
by binding an object to the JNDI name 'lts_resource_<resourcename>',
where <resourcename> is the name of the resource to its given length. The
resource is unlocked by unbinding the object. (Nesting the enq/deq is left to
the individual task when locked between tasks.) The scope of the resource
allocation is therefore the scope of JNDI in use, either a single application
server or clustered application servers using clustered JNDI.

Syntax:

ENQ RESOURCE(data-area) [LENGTH(data-value)]

 [UOW | TASK | MAXLIFETIME(cvda)]

 [NOSUSPEND]

 [RETRIES(data-value)]

 [RETRYINTERVAL(data-value)]

Elastic COBOL Programmer’s Guide 60

Service:

Task Control

Options:

RESOURCE(data-value)

Specifies the name of the resource as a data-area. This is always the
content of the specified resource, not the address of the resource. LENGTH
should always be specified, but the implicit length of the resource is used if
LENGTH is left unspecified.

LENGTH(data-value)

Specifies the length of the resource name. If left unspecified, an implicit
length of the resource data-area is used, not the address of the resource.
This must be between 1 and 255.

UOW

Specifies that the resource is to live until the end of the unit of work. This is
the default.

TASK

Specifies that the resource is to live until the end of the task.

MAXLIFETIME(cvda)

Specifies the maximum lifetime of the resource, either the CVDA for UOW or
TASK. The CVDA LUW is accepted as a synonym for UOW. Specify the
lifetime in this way if not constant, otherwise use the UOW or TASK tag
directly.

NOSUSPEND

Do not suspend the task waiting for the resource; issue ENQBUSY instead.

RETRIES(data-value)

Specifies a maximum number of retries to obtain the resource if the
implementation may use it; it is ignored otherwise.

RETRYINTERVAL(data-value)

Specifies an interval between retries to obtain the resource if the
implementation may use it; it is ignored otherwise. The interval is in
microseconds, so a RETRYINTERVAL(1000) would delay for one second
before retrying.

Conditions:

ENQBUSY The resource is busy and cannot be enqueued. This is
only issued if not instructed to wait for the resource
indefinitely. Unlike most conditions, it is ignored by
default, so always code a RESP or HANDLE to catch

Elastic COBOL Programmer’s Guide 61

this condition.

INVREQ

2 MAXLIFETIME was set to an invalid CVDA

LENGERR

1 LENGTH was not between 1 and 255.

ENTER TRACENUM

Append a record to the trace journal.

Syntax:

ENTER TRACENUM(data-value)

 FROM (data-area) [FROMLENGTH(data-area)]

[RESOURCE(name)]

[EXCEPTION]

Service:

Trace Control

Options:

TRACENUM

Trace identifier, a number within 0 through 199.

FROM

Contents of the trace entry.

FROMLENGTH

Length of the trace entry contents, within 0 through 4000.
RESOURCE

Resource field of trace entry.

EXCEPTION

Write entry even if user trace flag is off. The text '*EXCU' is included in the
trace entry.

Conditions:

INVREQ

1 TRACENUM is not within 0 through 199.

Elastic COBOL Programmer’s Guide 62

2 No trace destination available.

3 User trace flag is OFF, and EXCEPTION not specified.

LENGERR

4 FROMLENGTH is not within 0 through 4000.

EXTRACT CERTIFICATE

(THIS COMMAND IS UNSUPPORTED)

Extract information about the client X.509 certificate received during SSL
handshake, if present.

Syntax:

EXTRACT CERTIFICATE(ptr-ref)

[LENGTH(data-area)]

 [SERIALNUM(ptr-ref)]

 [SERIALNUMLEN(data-area)]

 [USERID(ptr-ref)]

 [OWNER | ISSUER]

 [COMMONNAME(ptr-ref)]

 [COMMONNAMLEN(data-area)]

 [COUNTRY(ptr-ref)]

 [STATE(ptr-ref)]

 [STATELEN(data-area)]

 [LOCALITY(ptr-ref)]

 [LOCALITYLEN(data-area)]

 [ORGANIZATION(ptr-ref)]

 [ORGANIZATLEN(data-area)]

 [ORGUNIT(ptr-ref)]

 [ORGUNITLEN(data-area)]

Service:

TCP/IP

Setup:

None

Elastic COBOL Programmer’s Guide 63

Options:

CERTIFICATE

Retrieve the full certificate binary.

LENGTH

Retrieve the length of the full certificate binary.

SERIALNUM

Retrieve the pointer to the serial number.

SERIALNUMLEN

Retrieve the length of the serial number.

USERID

Retrieve the user identification.

OWNER

The extracted values of this command relate to the owner of the certificate.
This is the default, if ISSUER is not specified.

ISSUER

The extracted values of this command relate to the issuer of the certificate.

COMMONNAME

Retrieve the common name from the client certificate.

COMMONNAMLEN

Retrieve the length of the common name retrieved.

COUNTRY

Retrieve the pointer to the country.

STATE

Retrieve the pointer to the state or province.

STATELEN

Retrieve the length of the state or province returned.

LOCALITY

Retrieve the locality.

LOCALITYLEN

Retrieve the length of the locality.

ORGANIZATION

Retrieve the organization.

ORGANIZATLEN

Retrieve the length of the organization.

Elastic COBOL Programmer’s Guide 64

ORGUNIT

Retrieve the organizational unit.

ORGUNITLEN

Retrieve the length of the organizational unit.

Conditions:

INVREQ

 Occurs for the following reasons:
The common is not in a web session,
Not in an HTTP request,
There is no certificate,
Or there is an error in retrieving the certificate.

LENGERR The extracted contents exceed the corresponding
length.

EXTRACT TCPIP

Extract information about the current TCP/IP connection.

The current implementation is available only when executing as a web
session.

Syntax:

EXTRACT TCPIP

 [CLIENTNAME(data-area) CNAMELENGTH(data-area)]

 [SERVERNAME(data-area) SNAMELENGTH(data-area)]

 [CLIENTADDR(data-area) CADDRLENGTH(data-area)]

 [CLIENTADDRNU(data-area)]

 [SERVERADDR(data-area) SADDRLENGTH(data-area)]

 [SERVERADDRNU(data-area)]

 [SSLTYPE(cvda)]

 [TCPIPSERVICE(data-area)]

 [PORTNUMBER(data-area)]

 [PORTNUMNU(data-area)]

Service:

TCP/IP

Elastic COBOL Programmer’s Guide 65

Setup:

None

Options:

CLIENTNAME

Extract the client host name, address in text form if unknown.

CNAMELENGTH

Pass the length of the CLIENTNAME buffer, receive the length of contents.

SERVERNAME

Extract the server host name, address in text form if unknown.

SNAMELENGTH

Pass the length of the SERVERNAME buffer, receive the length of contents.

CLIENTADDR

Receive the client address in text form.

CADDRLENGTH

Pass the length of the CLIENTADDR buffer, receive the length of contents.

CLIENTADDRNU

Receive the client address in four-byte form, suitable for PIC X(2) COMP-X.

SERVERADDR

Receive the server address in text form.

SADDRLENGTH

Pass the length of the SERVERADDR buffer, receive the length of contents.

SERVERADDRNU

Receive the server address in four-byte form, suitable for PIC X(2) COMP-X.

SSLTYPE

The CVDA value of SSL, NOSSL, or CLIENTAUTH, checkable against
DFHVALUE(SSL), DFHVALUE(NOSSL) or DFHVALUE(CLIENTAUTH) in
program code.

NOSSL is returned when connected without SSL, as in the http protocol.
SSL is returned when connected using SSL, as in the https protocol.
CLIENTAUTH is returned when connected using SSL and the client has
client authorization, a client certificate.

TCPIPSERVICE

Extract the TCP/IP service name, such as 'HTTP/1.1'.

PORTNUMBER

Elastic COBOL Programmer’s Guide 66

Extract the port number of the TCP/IP service in text form.

PORTNUMNU

Extract the port number of the TCP/IP service in numeric form.

Conditions:

INVREQ The session is not a web session.

LENGERR The length extracted is longer than the length allowed
by the corresponding LENGTH parameter.

EXTRACT WEB

See WEB EXTRACT.

FORMATTIME

Format a given absolute date/time timestamp into human readable formats.

Syntax:

FORMATTIME [ABSTIME(data-area)]

 [DATE(data-area)]

 [FULLDATE(data-area)]

 [DATEFORM(data-area)]

 [DATESEP | DATESEP(data-value)]

 [DAYCOUNT(data-area)]

 [DAYOFMONTH(data-area)]

 [DAYOFWEEK(data-area)]

 [DDMMYY(data-area)]

 [DDMMYYYY(data-area)]

 [MMDDYY(data-area)]

 [MMDDYYYY(data-area)]

 [MONTHOFYEAR(data-area)]

 [TIME(data-area) [TIMESEP | TIMESEP(data-value)]]

 [YEAR(data-area)]

 [YYDDD(data-area)]

 [YYDDMM(data-area)]

 [YYMMDD(data-area)]

Elastic COBOL Programmer’s Guide 67

 [YYYYDDD(data-area)]

 [YYYYDDMM(data-area)]

 [YYYYMMDD(data-area)]

Service:

 Date Time

Setup:

init.dateform

 This should be set to one of the following values:

 YYMMDD (default)
 DDMMYY
 MMDDYY

Options:

In all options where date formatting is returned, M is month digit, D is date
digit, Y is year digit.

ABSTIME(data-area)

Data-area is a numeric, specifying the number of milliseconds since January
1, 1900 at 00:00, as returned by ASKTIME. This is the value used as the
basis for other formatting options. If not specified, the current date/time
timestamp is used.

DATE(data-area)

Retrieve date in form specified by init.datform, where the date separator is
specified by DATESEP (blank otherwise).

FULLDATE(data-area)

DATEFORM(data-area)

Retrieve the content of init.datform.

DATESEP(data-value)

If data-value is specified, it is the date separator; if data-value is not
specified, '/' is used.

Data-value must be one character in length.

DAYCOUNT(data-area)

Retrieve number of days since January 1, 1900.

DAYOFMONTH(data-area)

Retrieve number of day in the month.

DAYOFWEEK(data-area)

Elastic COBOL Programmer’s Guide 68

Retrieve number of day in the week.

DDMMYY(data-area)

Retrieve the date in DDMMYY format.

DDMMYYYY(data-area)

Retrieve the date in DDMMYYYY format.

MMDDYY(data-area)

Retrieve the date in MMDDYY format.

MMDDYYYY(data-area)

Retrieve the date in MMDDYYYY format.

MONTHOFYEAR(data-area)

Retrieve the month of the year.

TIME(data-area)

Retrieve the time, where the separator in hh:mm:ss is specified by TIMESEP
(blank otherwise).

TIMESEP(data-value)

If data-value is specified, it is the time separator; if data-value is not
specified, ':' is used.

Data-value must be one character in length.

YEAR(data-area)

Retrieve the year.

YYDDD(data-area)

Retrieve the date in YYDDD format.

YYDDMM(data-area)

Retrieve the date in YYDDMM format.

YYMMDD(data-area)

Retrieve the date in YYMMDD format.

YYYYDDD(data-area)

Retrieve the date in YYYYDDD format.

YYYYDDMM(data-area)

Retrieve the date YYYYDDMM format.

YYYYMMDD(data-area)

Retrieve the date in YYYYMMDD format.

Conditions:

None

Elastic COBOL Programmer’s Guide 69

FREEMAIN

Free memory allocated by GETMAIN.

In this environment, memory is garbage collected automatically, so
FREEMAIN does nothing. If additional pointers point to the memory, it will
remain allocated. Additionally, if no pointers are pointing to the memory it is
removed automatically.

Syntax:

FREEMAIN

 {DATA(data-area) | DATAPOINTER(ptr-value)]

Setup:

None

Service:

Storage Control

Options:

DATA(data-area)

Specifies the main storage to be released.

DATAPOINTER(ptr-value)

Specifies the main storage to be released.

Conditions:

None

GET COUNTER

Get the next value from the counter service.

Syntax:

GET { COUNTER(name) | DCOUNTER(name) }

[POOL(name)]

 VALUE(data-area)

Elastic COBOL Programmer’s Guide 70

 [INCREMENT(data-value) [REDUCE]]

 [WRAP]

 [COMPAREMIN(data-value)]

 [COMPAREMAX(data-value)]

Service:

Counter

Setup:

pool.name=redirected_pool_name

If not specified, the pool name is the given name.

counter.jndi=counter_jndi_name

Specify the JNDI name of the Counter service. The default is
'CounterService'.

Options:

COUNTER(name)

Specifies the name of the 32-bit counter.

DCOUNTER(name)

Specifies the name of the 64-bit counter.

POOL(name)

Specifies the name of the pool of counters. Each Counter service maintains
its own pools of counters.

VALUE(data-area)

Retrieves the value of the counter.

INCREMENT(data-value)

Specifies an alternate increment value, rather than one (1).

REDUCE

Specifies that the increment is to be reduced if the increment would force the
counter to be at its limit. The result would then be the maximum value plus
one (1).

WRAP

Automatically performs a wrap rather than notify that the counter is its limit.

COMPAREMIN(data-value)

Elastic COBOL Programmer’s Guide 71

Specifies a minimum value against which to compare the value. If the value
is greater than or equal, then no action is taken; if less than the minimum, a
condition is raised.

If COMPAREMIN>COMPAREMAX, then either condition must be true rather
than both.

Success of the command is conditional upon the comparison.

COMPAREMAX(data-value)

Specifies a maximum value against which to compare the value. If the value
is less than or equal, then no action is taken; if less than the minimum, a
condition is raised.

If COMPAREMIN>COMPAREMAX, then either condition must be true rather
than both.

Success of the command is conditional upon the comparison.

Conditions:

INVREQ RESP2

201 Named counter invalid.

301 Server error.

303 Unexpected error, such as connectivity loss.

304 Invalid pool.

305 Cannot connect to server.

306 Server abend.

308 This condition cannot occur (options table not
loadable).

309 This condition cannot occur (options table error).

310 This condition cannot occur (options user exit).

403 The pool name contains invalid characters.

404 The counter name contains invalid characters.

406 The increment is invalid; it cannot be larger than
the total range of the counter.

LENGERR LENGERR occurs only for COUNTER commands,
not DCOUNTER commands.

001 The value has become negative.

002 The value is too large by one bit.

003 The value is too large by more than one bit.

SUPPRESSED RESP2

101 The maximum value has already been assigned.
It must be reset or retrieved using WRAP.

103 The value is not within COMPAREMIN and
COMPAREMAX, or beyond the limits if only one
of COMPAREMIN and COMPAREMAX is used

Elastic COBOL Programmer’s Guide 72

GETMAIN

Allocate main storage, returning a pointer to it. FREEMAIN is then used to
free the memory afterwards.

 Syntax:

GETMAIN SET(ptr-ref)

 {{FLENGTH(data-value) [BELOW]} | (LENGTH(data-value)}

 [INITIMG(data-value)]

 [SHARED]

 [NOSUSPEND]

 [USERDATAKEY | CICSDATAKEY]

Setup:

None

Service:

Storage Control

Options:

SET(ptr-ref)

SET retrieves the block of allocated storage.

FLENGTH(data-value)

FLENGTH determines the length of allocated storage. FLENGTH is
preferred over LENGTH.

BELOW

The BELOW option is to specify the location of allocated memory. This
option has no meaning with the environment and is ignored.

LENGTH(data-value)

LENGTH determines the length of allocated storage. FLENGTH is preferred
over LENGTH.

INITIMG(data-value)

Specify a one-character initialization for allocated memory. By default,
memory is initialized to low-values / nulls.

SHARED

Elastic COBOL Programmer’s Guide 73

The SHARED option allocates the memory for shared storage. This is not
possible within the environment, so it always raises the condition
UNSUPPORTED_OPTION.

NOSUSPEND

Do not suspend the task if memory is not available. This continuously waits
and retries the allocation.

USERDATAKEY

This specifies the location of allocated memory and has no meaning within
the environment. It is ignored.

CICSDATAKEY

This specifies the location of allocated memory and has no meaning within
the environment. It is ignored.

Conditions:

LENGERR RESP2

1 The FLENGTH < 1, or LENGTH = 0.

NOSTG RESP2

2 The storage requested is not currently
available.

UNSUPPORTED_OPTIO
N

This is always raised by SHARED.

JOURNAL

This command is obsolete, replaced by WRITE JOURNALNAME. See
WRITE JOURNALNUM for information on the obsolete syntax.

HANDLE ABEND

Handle an abnormal termination by executing procedural code or another
program.

Syntax:

HANDLE ABEND

 {CANCEL | RESET | PROGRAM(name) | LABEL(label)}

Elastic COBOL Programmer’s Guide 74

Service:

 Program Control

Options:

CANCEL

Specifies that any previous handle for abend should be cancelled.

RESET

Specifies that a previously cancelled abend should be reinstated.

LABEL(label)

Specifies a paragraph or section label to execute upon abend.

PROGRAM(name)

Specifies a program name to link and execute upon abend.

Conditions:

PGMIDERR

The program could not be linked. This may be delayed
until the actual abend occurs.

HANDLE AID

Handle Attention Identifier instructs the program to automatically transfer control to the
given label when the Attention Identifier key is recognized as pressed in the RECEIVE
MAP command.

Syntax:

HANDLE

ANYKEY(label)

CLEAR(label)

CLRPARTN(label)

ENTER(label)

LIGHTPEN(label)

OPERID(label)

PA1…PA3(label)

PF1…PA24(label)

TRIGGER(label)

Elastic COBOL Programmer’s Guide 75

Service:

Execute Interface Program

Setup:

None

Options:

key(label)

Label specifies a paragraph or section name. If label is omitted, then the
default handler is restored.

Conditions:

None

HANDLE CONDITION

Handle conditions explicitly using custom program logic rather than the
default condition handler (generally the termination dump). These handlers
may be suspended and restored using PUSH HANDLE and POP HANDLE.

Syntax:

HANDLE CONDITION {condition(label)}…

Service:

Execute Interface Program

Setup:

None

Options:

condition(label)

Condition specifies a condition name, such as INVREQ, QIDERR, ERROR,
etc.

Label specifies a paragraph or section name. If label is omitted, then the
default handler is restored.

Elastic COBOL Programmer’s Guide 76

Conditions:

 None

IGNORE CONDITION

Ignore conditions explicitly rather than executing the default condition
handler (generally the termination dump) or other custom handler. These
handlers may be suspended and restored using PUSH HANDLE and POP
HANDLE.

Syntax:

IGNORE CONDITION {condition}…

Service:

Execute Interface Program

Setup:

None

Options:

condition

Condition specifies a condition name, such as INVREQ, QIDERR, ERROR,
etc.

Conditions:

None

LINK

Link to another program, and then return continuing the existing program.

Syntax:

LINK PROGRAM(name)

 [COMMAREA(data-area) [LENGTH(data-area)] [DATALENGTH(data-
value)]

 [INPUTMSG(data-area) [INPUTMSGLEN(data-value)]]

Elastic COBOL Programmer’s Guide 77

 [SYSID(name)]

 [SYNCONRETURN]

 [TRANSID(name)]

Service:

Program Control

Setup:

pathname=program Uri

program_name must be a valid program reference, either a class name or
URI.

It may be a class-name/program-name, or remote:jndi-name.

pct.name.sysid=jndi_name

This establishes the sysid for a program, when one is not specified in the
link.

pct.name.transid=transid_name

This establishes the default transid for a program, when one is not specified
in the link.

sysid.name=jndi_name

This establishes a JNDI name for the sysid, possibly referencing a remote
EJB.

xlt.name=program_name

program_name must be a valid name in the program table.

Options:

PROGRAM(name)

The program name to be loaded.

COMMAREA(data-area)

The COMMAREA to pass to the linked program.

LENGTH(data-area)

The length of the COMMAREA.

DATALENGTH(data-value)

The data length of the COMMAREA to pass to the other program. This must
be less than or equal to the LENGTH.

INPUTMSG(data-area)

Specifies data to be received by the other program's RECEIVE.

Elastic COBOL Programmer’s Guide 78

INPUTMSGLEN(data-value)

Specifies the length of the INPUTMSG.

SYSID(name)

Specifies the system on which the program is to be linked. This means that
the program name's table entry begins with the system id followed by a
period, then the normal program name.

SYNCONRETURN

Only meaningful for Distributed Program Link, specifies that the linked
program is to take a syncpoint upon completion.

TRANSID(name)

Specifies the transaction name to link.

Conditions:

INVREQ

16 TRANSID is all blanks.

LENGERR

11 COMMAREA length not between 0 and 32767

12 DATALENGTH < 0

13 DATALENGTH > LENGTH

27 INPUTMSGLEN not between 0 and 32767

PGMIDERR

1 The program name has no table entry.

3 The program could not be loaded.

LOAD

Load a program or resource into memory.

As the target environment provides a strong separation between program
data and program code, whether ENTRY or SET is used to obtain the return
reference determines the type of load. If ENTRY, program code is returned;
if SET, then program data is returned.

Syntax:

LOAD {PROGRAM(name) | RESOURCE(name)}

 [SET(pointer-ref)]

 [ENTRY(procedure-pointer-ref)]

Elastic COBOL Programmer’s Guide 79

 [LENGTH(data-area) | FLENGTH(data-area)]

 [HOLD]

Service:

Program Control

Setup:

rct.name=resource_name

resource_name must be the name of a data file in the resources directory, or
a classname representing a java.lang.Runnable class, such as an Elastic
COBOL program.

pct.name=program_uri

program_uri must be a valid program reference, either a classname or URI.

Options:

PROGRAM(name)

The program name to be loaded.

RESOURCE(name)

The resource name to be loaded. This is a synonym for PROGRAM,
preferred for data. It is only referenced if PROGRAM is not present.

ENTRY(procedure-pointer-ref)

This returns a reference to a Java executable class. This will use the
resource table name, if available, otherwise the program table name.

LENGTH(data-area)

Only used for data, returns the length of the data area set.

FLENGTH(data-area)

Only used for data, returns the length of the data area set.

SET(pointer-ref)

Returns the memory containing the data represented by the program or
resource name.

HOLD

Requests that the data area not be released when the task is ended. As this
system uses a garbage collection scheme for memory allocation, this option
has no effect. The memory is released automatically whenever no
references are made to it.

Elastic COBOL Programmer’s Guide 80

Conditions:

PGMIDERR

1 The program name has no table entry.

3 The program could not be loaded.

MONITOR

(THIS COMMAND IS UNSUPPORTED)

MONITOR provides performance information.

Syntax:

MONITOR

POINT(data-value) [DATA1(data-area) DATA2(data-area)
ENTRYNAME(data-area)]

Service:

 Trace Control

POP HANDLE

Restore condition handlers from the stack, previously pushed there by
PUSH HANDLE. This is useful if desiring the suspension of handling for a
routine and it should be paired with PUSH HANDLE.

Syntax:

POP HANDLE

Service:

Execute Interface Program

Setup:

None

Options:

None

Elastic COBOL Programmer’s Guide 81

Conditions:

INVREQ

 Indicates that there was no matching PUSH HANDLE.

POST

Post a message to an area of memory after a specified delay. The task
continues processing while the post waits to perform its action.

INTERVAL or AFTER specify a period of time, whereas TIME or AT specify
the final time itself.

Note that most foreground sessions contain timeouts and will be terminated
if delayed too far.

Syntax:

POST

 SET(pointer-ref)

 [REQID(data-value)]

 [INTERVAL(hhmmss)]

 [AFTER

[HOURS(data-value)]

[MINUTES(data-value)]

[SECONDS(data-value)]

]

 [TIME(hhmmss)]

 [AT

 [HOURS(data-value)]

 [MINUTES(data-value)]

 [SECONDS(data-value)]

]

Service:

Interval Control

Setup:

None

Elastic COBOL Programmer’s Guide 82

Options:

SET(pointer-ref)

Specifies a pointer (USAGE POINTER) data item which is set to a four-byte
memory control area. When the delay is finished and the post is done, the
first and third byte are altered to X"40" and X"80". This exact same pointer
item may be passed to the WAIT EVENT command.

REQID(data-value)

Specifies a request ID through which this command may be cancelled using
the CANCEL command. The request ID is valid only within the same
session.

INTERVAL(hhmmss)

Specifies an interval of time duration data-value. The format is a single
number with two-digits each hour, minute, second.

TIME(hhmmss)

Specifies a final time data-value. The format is a single number with two-
digits each hour, minute, second.

AFTER

AFTER specifies that HOURS, MINUTES and SECONDS refers to an
interval duration.

AT

AT specifies that HOURS, MINUTES and SECONDS refers to a final time.

HOURS(data-value)

Specifies the number of hours, and it must be within 0..99.

MINUTES(data-value)

Specifies the number of minutes, and it must be within 0..59 if other HOURS
or SECONDS is specified.

SECONDS(data-value)

Specifies the number of seconds, and it must be within 0..59 if other HOURS
or MINUTES is specified.

Conditions:

EXPIRED The interval has already expired.

INVREQ RESP2

 4 Hours are invalid.
5 Minutes are invalid.
6 Seconds are invalid.

Elastic COBOL Programmer’s Guide 83

PURGE MESSAGE

(THIS COMMAND IS UNSUPPORTED)

Purge the current BMS logical message.

Syntax:

PURGE MESSAGE

Service:

Basic Mapping Support

Setup:

None

Options:

None

Conditions:

INVREQ Invalid request.

TSIOERR Temporary storage input/output error.

PUSH HANDLE

Push the current condition handlers onto the stack. This is useful if desiring
the suspension of handling for a routine and it should be paired with POP
HANDLE.

Syntax:

PUSH HANDLE

Service:

Execute Interface Program

Setup:

None

Elastic COBOL Programmer’s Guide 84

Options:

None

Conditions:

None

QUERY COUNTER

Query attributes of the named counter.

Syntax:

UPDATE { COUNTER(name) | DCOUNTER(name) } [POOL(name)]

 [VALUE(data-area)]

 [MINIMUM(data-area)]

 [MAXIMUM(data-area)]

Service:

Counter

Setup:

pool.name=redirected_pool_name

If not specified, the pool name is the given name.

counter.jndi=counter_jndi_name

Specify the JNDI name of the Counter service. The default is
'CounterService'.

Options:

COUNTER(name)

Specifies the name of the 32-bit counter.

DCOUNTER(name)

Specifies the name of the 64-bit counter.

POOL(name)

Specifies the name of the pool of counters. Each Counter service maintains
its own pools of counters.

Elastic COBOL Programmer’s Guide 85

VALUE(data-area)

Retrieves the current value of the counter. The counter's value is only
retrieved, not updated, by this action.

MINIMUM(data-area)

Retrieves the minimum value of the counter, as given upon its definition.

MAXIMUM(data-area)

Retrieves the maximum value of the counter, as given upon its definition.

Conditions:

INVREQ RESP2

201 Named counter invalid.

301 Server error.

303 Unexpected error, such as connectivity loss.

304 Invalid pool.

305 Cannot connect to server.

306 Server abend.

308 This condition cannot occur (options table not
loadable).

309 This condition cannot occur (options table error).

310 This condition cannot occur (options user exit).

403 The pool name contains invalid characters.

404 The counter name contains invalid characters

LENGERR LENGERR occurs only for COUNTER commands, not
DCOUNTER commands.

001 The value has become negative.

002 The value is too large by one bit.

003 The value is too large by more than one bit.

QUERY SECURITY

This command is dependent upon the capabilities of the External Security
Manager.

Syntax:

QUERY SECURITY

 {RESTYPE(data-value) | RESCLASS(data-value) RESIDLENGTH(data-
value)}

 RESID(data-value)

 [LOGMESSAGE(cvda)]

 [READ(cvda)]

Elastic COBOL Programmer’s Guide 86

 [UPDATE(cvda)]

 [CONTROL(cvda)]

 [ALTER(cvda)]

Service:

Security

Setup:

None

Options:

ALTER(cvda)

Retrieves whether user has alter authority for resource, returning
ALTERABLE or NOTALTERABLE.

CONTROL(cvda)

Retrieves whether user has control authority for resource, returning
CTRLABLE or NOTCTRLABLE.

LOGMESSAGE(cvda)

Specifies whether security violation messages are logged, passing LOG or
NOLOG.

READ(cvda)

Retrieves whether user has read authority for resource, returning
READABLE or NOTREADABLE.

RESCLASS(data-value)

Specifies 8-character resource class. SPCOMMAND refers to an ETP
resource.

RESID(data-value)

Specifies the resource ID to check.

RESIDLENGTH(data-value)

Specifies the length of the resource ID to check.

RESTYPE(data-value)

Specifies the type of resource, 1 to 12 characters, from the list:

DB2ENTRY SPCOMMAND FILE

TDQUEUE JOURNALNAME TRANSACTION

JOURNALNUM TRANSATTACH PROGRAM

TSQUEUE PSB

Elastic COBOL Programmer’s Guide 87

UPDATE(cvda)

Retrieves whether user has update authority for resource, returning
UPDATABLE or NOTUPDATABLE.

Conditions:

INVREQ

LENGERR

NOTFND

QIDERR

READ

Read a single record from the file.

Syntax:

READ {FILE(data-value) | DATASET(data-value)}

 [UPDATE [TOKEN(data-area)]

| UNCOMMITTED

| CONSISTENT

| REPEATABLE

]

 {INTO(data-area) | SET(pointer-ref)}

 RIDFLD(data-area) [KEYLENGTH(data-value) [GENERIC]]]

 [SYSID(data-value) LENGTH(data-area) | LENGTH(data-area)]

 [RBA | RRN | DEBKEY | DEBREC]

 [EQUAL | GTEQ]

 [NOSUSPEND]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

Elastic COBOL Programmer’s Guide 88

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

CONSISTENT

Specifies data integrity, the record is read in a consistent manner with other
data clients.

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

DEBKEY

Deblocking by key in BDAM, this option is not used.

DEBREC

Deblocking by record in BDAM, this option is not used.

EQUAL

Specifies that the record's key must be equal to the given record ID field.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

GENERIC

Specifies that the record ID field is generic, matching any with the given
contents equal up the length of keylength.

GTEQ

Specifies that the record's key must be greater than or equal to the given
record ID field.

INTO(data-area)

Specifies the data-area into which the record is read.

KEYLENGTH(data-value)

Specifies the length of the record ID key field.

LENGTH(data-area)

Specifies the length of the into field. Upon return, this may indicate the
length of the actual retrieved record. As a mapping is occurring between
records and SQL, the return length will generally be the maximum record
length.

NOSUSPEND

The read does not suspend on locks.

Elastic COBOL Programmer’s Guide 89

RBA

Specifies that the key is by relative byte address.

REPEATABLE

Specifies data integrity, the record read is repeatable.

RIDFLD(data-area)

Specifies the record ID field, the key used to search for the record. This
data item is mapped to the column marked with a ridfld attribute in the XML
file descriptor.

RRN

Specifies that the key is by relative record number.

SET(pointer-ref)

Retrieves the data record into a data area pointed to by the pointer ref.

SYSID(data-value)

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

TOKEN(data-area)

Specifies a token to be used later in a rewrite command.

UNCOMMITTED

Specifies data integrity, the record read is uncommitted.

UPDATE

Specifies that the record is to be read for update, necessary for the rewrite
command.

Conditions:

DUPKEY The record has a duplicate key that has not yet
been read.

FILENOTFOUN
D

The file itself could not be found.

ILLOGIC A logical error occurred.

INVREQ Invalid request.

IOERR An input/output error occurred, such as an
invalid SQL query.

LENGERR The length of the record read exceeds the
given INTO buffer's LENGTH.

NOTAUTH Not authorized.

NOTFND The record was not found, such as an invalid
record ID field.

NOTOPEN The file is not open.

Elastic COBOL Programmer’s Guide 90

RECORDBUSY The record was locked.

READNEXT

Read the next record from the file during a browse operation. This must be
bracketed by STARTBR and ENDBR commands.

Syntax:

READNEXT {FILE(data-value) | DATASET(data-value)}

 [UPDATE [TOKEN(data-area)]

| UNCOMMITTED

| CONSISTENT

| REPEATABLE

]

 {INTO(data-area) | SET(pointer-ref)}

 RIDFLD(data-area) [KEYLENGTH(data-value) [REQID(data-value)]]]

 [SYSID(data-value) LENGTH(data-area) | LENGTH(data-area)]

 [RBA | RRN]

 [NOSUSPEND]

Service:

 File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

CONSISTENT

Elastic COBOL Programmer’s Guide 91

Specifies data integrity, the record is read in a consistent manner with other
data clients.

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

INTO(data-area)

Specifies the data-area into which the record is read.

KEYLENGTH(data-value)

Specifies the length of the record ID key field.

LENGTH(data-area)

Specifies the length of the into field. Upon return, this may indicate the
length of the actual retrieved record. As a mapping is occurring between
records and SQL, the return length will generally be the maximum record
length.

NOSUSPEND

The read does not suspend on locks.

RBA

Specifies that the key is by relative byte address.

REPEATABLE

Specifies data integrity, the record read is repeatable.

REQID(data-value)

Specifies a browser's request ID.

RIDFLD(data-area)

Specifies the record ID field, the key used to search for the record. This
data item is mapped to the column marked with an ridfld attribute in the XML
file descriptor.

RRN

Specifies that the key is by relative record number.

SET(pointer-ref)

Retrieves the data record into a data area pointed to by the pointer ref.

SYSID(data-value)

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

TOKEN(data-area)

Elastic COBOL Programmer’s Guide 92

Specifies a token to be used later in a rewrite command.

UNCOMMITTED

Specifies data integrity, the record read is uncommitted.

UPDATE

Specifies that the record is to be read for update, necessary for the rewrite
command.

Conditions:

DUPKEY The record has a duplicate key that has not yet
been read.

ENDFILE The end of the browse request's result set has
been reached.

FILENOTFOUN
D

The file itself could not be found.

ILLOGIC A logical error occurred.

INVREQ Invalid request.

IOERR An input/output error occurred, such as an invalid
SQL query.

LENGERR The length of the record read exceeds the given
INTO buffer's LENGTH.

NOTAUTH Not authorized.

NOTFND The record was not found, such as an invalid
record ID field.

NOTOPEN The file is not open.

RECORDBUSY The record was locked.

READPREV

Read the previous record from the file during a browse operation. This must
be bracketed by STARTBR and ENDBR commands.

Note, not all SQL JDBC drivers support the operation required to browse
previous records. An IOERR with a message about an operation not being
supported by JDBC 2.0 will be given if the JDBC driver does not have
sufficient support for this command.

Syntax:

READPREV {FILE(data-value) | DATASET(data-value)}

 [UPDATE [TOKEN(data-area)]

| UNCOMMITTED

| CONSISTENT

| REPEATABLE

Elastic COBOL Programmer’s Guide 93

]

 {INTO(data-area) | SET(pointer-ref)}

 RIDFLD(data-area) [KEYLENGTH(data-value) [REQID(data-value)]]]

 [SYSID(data-value) LENGTH(data-area) | LENGTH(data-area)]

 [RBA | RRN]

 [NOSUSPEND]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

CONSISTENT

Specifies data integrity, the record is read in a consistent manner with other
data clients.

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

INTO(data-area)

Specifies the data-area into which the record is read.

KEYLENGTH(data-value)

Specifies the length of the record ID key field.

LENGTH(data-area)

Elastic COBOL Programmer’s Guide 94

Specifies the length of the into field. Upon return, this may indicate the
length of the actual retrieved record. As a mapping is occurring between
records and SQL, the return length will generally be the maximum record
length.

NOSUSPEND

The read does not suspend on locks.

RBA

Specifies that the key is by relative byte address.

REPEATABLE

Specifies data integrity, the record read is repeatable.

REQID(data-value)

Specifies a browser’s request ID.

RIDFLD(data-area)

Specifies the record ID field, the key used to search for the record. This
data item is mapped to the column marked with an ridfld attribute in the XML
file descriptor.

RRN

Specifies that the key is by relative record number.

SET(pointer-ref)

Retrieves the data record into a data area pointed to by the pointer ref.

SYSID(data-value)

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

TOKEN(data-area)

Specifies a token to be used later in a rewrite command.

UNCOMMITTED

Specifies data integrity, the record read is uncommitted.

UPDATE

Specifies that the record is to be read for update, necessary for the rewrite
command.

Conditions:

DUPKEY The record has a duplicate key that has not yet
been read.

ENDFILE The end of the browse request's result set has
been reached.

FILENOTFOUN
D

The file itself could not be found.

Elastic COBOL Programmer’s Guide 95

ILLOGIC A logical error occurred.

INVREQ Invalid request.

IOERR An input/output error occurred, such as an invalid
SQL query.

LENGERR The length of the record read exceeds the given
INTO buffer's LENGTH.

NOTAUTH Not authorized.

NOTFND The record was not found, such as an invalid
record ID field.

NOTOPEN The file is not open.

RECORDBUSY The record was locked.

READQ TD

Read data from a transient data queue.

Syntax:

READQ TD QUEUE(name)

 [INTO(data-area) | SET(pointer-ref)]

 [LENGTH(data-area)]

 [SYSID(name)]

 [NOSUSPEND]

Service:

Transient Data Control

Setup:

queue[.sysid_value].name=uri

[sysid.name=sysid_value]

Options

QUEUE(name)

Specifies the name of the transient data queue. The queue must be
defined.

INTO(data-area)

Specifies the data area into which the queue data is copied.

SET(pointer-ref)

Returns a pointer to the read data record.

Elastic COBOL Programmer’s Guide 96

LENGTH(data-value)

Specifies the length of the INTO buffer, if provided. Returns the length of
the returned data.

SYSID(name)

Specifies the system ID. This is used to determine which queue definition is
used.

Conditions

SYSIDERR An unknown sysid is being used.

QIDERR

1 There is no such queue definition.

2 The queue could not be obtained.

QBUSY The queue was busy and could not be read, only
possible if NOSUSPEND is specified.

QZERO The end of the queue has been reached.

INVREQ

The queue consumer could not be created or started,
for reasons such as being an output only queue.

IOERR The receive from queue responded with an error.

READQ TS

Read data from a temporary storage data queue.

Syntax:

READQ TS {QUEUE(name) | QNAME(name)}

 [INTO(data-area) | SET(pointer-ref)]

 [LENGTH(data-area)]

 [SYSID(name)]

 [NOSUSPEND]

 [NUMITEMS(data-area)]

 [NEXT | ITEM(data-value)]

Service:

 Temporary Storage Control

Elastic COBOL Programmer’s Guide 97

Setup:

queue[.sysid_value].name[.main | .auxiliary]=uri

[sysid.name=sysid_value]

Options

QUEUE(name)

Specifies the name of the transient data queue. The queue must be
defined.

QNAME(name)

See QUEUE.

INTO(data-area)

Specifies the data area into which the queue data is copied.

SET(pointer-ref)

Returns a pointer to the read data record.

LENGTH(data-value)

Specifies the length of the INTO buffer, if provided. Returns the length of
the returned data.

SYSID(name)

Specifies the system ID. This is used to determine which queue definition is
used.

NUMITEMS(data-area)

Returns the number of items in the queue.

ITEM(data-area)

Specifies the queue item number to read.

NEXT

Specifies that the next item in the queue is to be read. This position counter
is shared at the scope of the queue, which may not be the individual task.

Conditions

SYSIDERR An unknown sysid is being used.

QIDERR

1 There is no such queue definition.

2 The queue could not be obtained.

QBUSY The queue was busy and could not be read, only
possible if NOSUSPEND is specified.

Elastic COBOL Programmer’s Guide 98

ITEMERR

The requested item is not present in the queue.

LENGERR The length of the read data is longer than the allocated
LENGTH. This is only possible when INTO is used
rather than SET.

RECEIVE MAP

Receive the presentation map's input.

Syntax:

RECEIVE MAP(name)

 [MAPSET(name)]

 [INTO(data-area) | SET(pointer-ref)]

 [

TERMINAL [ASIS] [INPARTN(data-value)]

| FROM(data-area) [LENGTH(data-value)]

]

Service:

 Basic Mapping Support

Setup:

 None

Options:

ASIS

FROM(data-area)

INPARTN(data-value)

INTO(data-area)

LENGTH(data-value)

MAP(name)

The name is a literal data-value.

MAPSET(name)

Elastic COBOL Programmer’s Guide 99

The name is a literal data-value.

SET(pointer-ref)

TERMINAL

Conditions:

EOC

EODS

INVMPSZ

INVPARTN

INVREQ

MAPFAIL

PARTNFAIL

RDATT

UNEXPIN

RECEIVE PARTN

Syntax:

RECEIVE PARTN(data-area)

 {INTO(data-area) | SET(pointer-ref)}

 [LENGTH(data-value)]

 [ASIS]

Service:

Basic Mapping Support

Setup:

None

Options:

ASIS

INTO(data-area)

LENGTH(data-value)

PARTN(data-area)

SET(pointer-ref)

Elastic COBOL Programmer’s Guide 100

Conditions:

EOC

EODS

INVPARTN

INVREQ

LENGERR

RELEASE

Release a loaded program resource.

This command does nothing in this system, as this system employs garbage
collection for automatic release of resources when no longer referenced.
The resource is available when any pointers or procedure-pointers
referencing it have been altered to point to another item, including null.

It is good practice to null such pointers in all cases as in other systems they
would become invalid after release.

Syntax:

RELEASE PROGRAM(name)

Service:

Program Control

Setup:

None

Options:

PROGRAM(name)

The program name is the one to be released.

Conditions:

None

RESETBR

Reset a browse operation. This is similar to an ENDBR followed by a
STARTBR.

Elastic COBOL Programmer’s Guide 101

Syntax:

RESETBR

 {FILE(data-value) | DATASET(data-value)}

 [KEYLENGTH(data-value) [GENERIC]]

 [REQID(data-value)]

 [SYSID(data-value)]

 [GTEQ | EQUAL]

 [RBA | RRN]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

EQUAL

Specifies that the record's key must be equal to the given record ID field.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

GENERIC

Specifies that the record ID field is generic, matching any with the given
contents equal up the length of keylength.

GTEQ

Elastic COBOL Programmer’s Guide 102

Specifies that the record's key must be greater than or equal to the given
record ID field.

KEYLENGTH(data-value)

Specifies the length of the record ID key field.

RBA

Specifies that the key is by relative byte address.

REQID(data-value)

Specifies a request ID to be used in browsing operations.

RIDFLD(data-area)

Specifies the record ID field, the key used to search for the record. This
data item is mapped to the column marked with an ridfld attribute in the XML
file descriptor.

RRN

Specifies that the key is by relative record number.

SYSID(data-value)

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

Conditions:

FILENOTFOUN
D

The file itself could not be found.

ILLOGIC A logical error occurred.

INVREQ Invalid request.

IOERR An input/output error occurred, such as an invalid
SQL query.

NOTAUTH Not authorized.

NOTFND The record was not found, such as an invalid
record ID field.

RETRIEVE

Retrieve data passed to the task by the START command.

If there are multiple retrieve records passed, each retrieve will fetch the next
until ENDDATA is reached.

Syntax:

RETRIEVE

 {INTO(data-area) | SET(pointer-ref)}

Elastic COBOL Programmer’s Guide 103

 [LENGTH(data-area)]

 [RTRANSID(data-area)]

 [RTERMID(data-area)]

 [QUEUE(data-area)]

 [WAIT]

Service:

Interval Control

Setup:

None

Options:

INTO(data-area)

Retrieves the data passed by START FROM.

SET(pointer-ref)

Retrieves the data passed by START FROM as a pointer.

LENGTH(data-area)

Specifies the length of the INTO data-area.

Retrieves the length of the START FROM buffer actually passed.

RTRANSID(data-area)

Retrieves the 4-character RTRANSID passed by the START command.

RTERMID(data-area)

Retrieves the 4-character RTERMID passed by the START command.

QUEUE(data-area)

Retrieves the 8-character name of the temporary storage queue passed by
START.

WAIT

Conditions:

ENDDATA ENDDATA is returned when the end of data passed
is reached.

ENVDEFERR Retrieve attempted to access a parameter that was
not passed.

INVREQ Invalid request.

LENGERR The specified length is insufficient to hold the

Elastic COBOL Programmer’s Guide 104

returned data.

NOTFND

RETURN

Return program control the next highest level, possibly setting the next
transaction to process.

The ability to set the transaction is what allows pseudo-conversations to
function. When a program has processed its input and generated its output,
it marks the next transaction to receive the input from the current output.

Syntax:

RETURN

 [TRANSID(name) [COMMAREA(data-area) [LENGTH(data-value)]]]

 [INPUTMSG(data-area) [INPUTMSGLEN(data-value)]]

 [ENDACTIVITY]

Service:

 Program Control

Setup:

pct.name=program_uri

program_name must be a valid program reference, either a classname or
URI.

xlt.name=program_name

program_name must be a valid name in the program table.

Options:

TRANSID(name)

Returns the transaction name to use on the next leg of a pseudo-
conversation, or to use immediately if IMMEDIATE is passed.

COMMAREA(data-area)

The COMMAREA to pass to the linked program.

LENGTH(data-area)

The length of the COMMAREA.

INPUTMSG(data-area)

Elastic COBOL Programmer’s Guide 105

Specifies data to be received by the other program's RECEIVE.

INPUTMSGLEN(data-value)

Specifies the length of the INPUTMSG.

IMMEDIATE

Specifies that the transaction is tied to the facility immediately.

ENDACTIVITY

This is used only for BTS (Business Transaction Services). This is ignored
since BTS is not supported.

Conditions:

INVREQ

1 Cannot return COMMAREA when no facility present.

2 IMMEDIATE or COMMAREA was passed at other than
the top program level.

8 Cannot return INPUTMSG when no facility present.

LENGERR

11 COMMAREA length not between 0 and 32767.

27 INPUTMSGLEN not between 0 and 32767

REWIND COUNTER

Rewind the named counter that has reached its limit.

Syntax:

REWIND { COUNTER(name) | DCOUNTER(name) } [POOL(name)]

 [INCREMENT(data-value)]

Service:

Counter

Setup:

pool.name=redirected_pool_name

If not specified, the pool name is the given name.

counter.jndi=counter_jndi_name

Elastic COBOL Programmer’s Guide 106

Specify the JNDI name of the Counter service. The default is
'CounterService'.

Options:

COUNTER(name)

Specifies the name of the 32-bit counter.

DCOUNTER(name)

Specifies the name of the 64-bit counter.

POOL(name)

Specifies the name of the pool of counters. Each Counter service maintains
its own pools of counters.

INCREMENT(data-value)

The counter is valid to reset only if already at its limit, or if the given
increment would reach its limit.

Conditions:

INVREQ RESP2

201 Named counter invalid.

301 Server error.

303 Unexpected error, such as connectivity loss.

304 Invalid pool.

305 Cannot connect to server.

306 Server abend.

308 This condition cannot occur (options table not
loadable).

309 This condition cannot occur (options table error).

310 This condition cannot occur (options user exit).

403 The pool name contains invalid characters.

404 The counter name contains invalid characters.

406 The increment is invalid; it cannot be larger than
the total range of the counter.

SUPPRESSED RESP2

102 The counter has not reached its limit, including
increment if specified.

REWRITE

Rewrite a record previously read using the update option.

Elastic COBOL Programmer’s Guide 107

Syntax:

REWRITE

 {FILE(data-value) | DATASET(data-value)}

 [TOKEN(data-area)]

 FROM(data-area)

 [SYSID(data-value) LENGTH(data-area) | LENGTH(data-area)]

 [NOSUSPEND]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

LENGTH(data-area)

Specifies the length of the from field.

NOSUSPEND

The read does not suspend on locks.

SYSID(data-value)

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

Elastic COBOL Programmer’s Guide 108

TOKEN(data-area)

Specifies a token relating this REWRITE back to a READ.

Conditions:

FILENOTFOUND The file itself could not be found.

ILLOGIC A logical error occurred.

INVREQ Invalid request.

IOERR An input/output error occurred, such as an
invalid SQL query.

LENGERR The length of the record read exceeds the
given INTO buffer's LENGTH.

NOTFND The data record to rewrite was not found, such
as having been just deleted.

NOTAUTH Not authorized.

RECORDBUSY The record was locked.

ROUTE

(THIS COMMAND IS UNSUPPORTED)

Syntax:

ROUTE

 [INTERVAL(hhmmss)]

 [AFTER

[HOURS(data-value)]

[MINUTES(data-value)]

[SECONDS(data-value)]

]

 [TIME(hhmmss)]

 [AT

 [HOURS(data-value)]

 [MINUTES(data-value)]

 [SECONDS(data-value)]

]

 [ERRTERM | ERRTERM(data-value)]

 [TITLE(data-area)]

 [LIST(data-area)]

Elastic COBOL Programmer’s Guide 109

 [OPCLASS(data-area)]

 [REQID(data-value)]

 [LDC(data-value)]

 [NLEOM]

Service:

Basic Mapping Support

Setup:

None

Options:

INTERVAL(hhmmss)

Specifies an interval of time duration data-value. The format is a single
number with two-digits each hour, minute, second.

TIME(hhmmss)

Specifies a final time data-value. The format is a single number with two-
digits each hour, minute, second.

AFTER

AFTER specifies that HOURS, MINUTES and SECONDS refers to an
interval duration.

AT

AT specifies that HOURS, MINUTES and SECONDS refers to a final time.

HOURS(data-value)

Specifies the number of hours, and it must be within 0..99.

MINUTES(data-value)

Specifies the number of minutes, and it must be within 0..59 if other HOURS
or SECONDS is specified.

SECONDS(data-value)

Specifies the number of seconds, and it must be within 0..59 if other HOURS
or MINUTES is specified.

FROM(data-area)

Specifies the user data area to be passed to the new task.

ERRTERM(data-value)

Specifies a terminal to be notified of any error in routing the message.

LDC(data-value)

Elastic COBOL Programmer’s Guide 110

Specifies 2-character logical device code.

LIST(data-area)

Specifies list of terminals and operators.

NLEOM

New line end of message.

OPCLASS(data-area)

Specifies list of operator classes.

REQID(data-value)

Specifies 2-character prefix of temporary storage queue.

TITLE(data-area)

Specifies the title of the route message.

Conditions:

IGREQID

INVERRTERM

INVLDC

INVREQ

RTEFAIL

RTESOME

SEND CONTROL

Syntax:

SEND CONTROL

 [CURSOR | CURSOR(data-value)]

 [FORMFEED]

 [ERASE [DEFAULT | ALTERNATE] | ERASEAUP]

 [PRINT]

 [FREEKB]

 [ALARM]

 [FRSET]

Service:

Basic Mapping Support

Elastic COBOL Programmer’s Guide 111

Setup:

None

Options:

CURSOR(data-value)

FORMFEED

ERASE

DEFAULT

ALTERNATE

ERASEAUP

PRINT

FREEKB

ALARM

FRSET

Conditions:

IGREQCD

IGREQID

INVLDC

INVPARTN

INVREQ

RETPAGE

TSIOERR

WRBRK

SEND MAP

Syntax:

SEND MAP(name)

 MAPSET(name)

 [FROM(data-area) | MAPONLY]

 [DATAONLY]

 [LENGTH(data-value)]

 [CURSOR | CURSOR(data-value)]

 [FORMFEED]

Elastic COBOL Programmer’s Guide 112

 [ERASE [DEFAULT | ALTERNATE] | ERASEAUP]

 [PRINT]

 [FREEKB]

 [ALARM]

 [FRSET]

Service:

Basic Mapping Support

Setup:

None

Options:

MAP(name)

The name is a literal data-value.

MAPSET(name)

The name is a literal data-value.

FROM(data-area)

MAPONLY

DATAONLY

LENGTH(data-value)

CURSOR(data-value)

FORMFEED

ERASE

DEFAULT

ALTERNATE

ERASEAUP

PRINT

FREEKB

ALARM

FRSET

Elastic COBOL Programmer’s Guide 113

SEND PAGE

(THIS COMMAND IS UNSUPPORTED)

Syntax:

SEND PAGE

 [RELEASE [TRANSID(name)] | RETAIN]

 [TRAILER(data-area)]

 [SET(pointer-ref)]

 [AUTOPAGE [CURRENT | ALL] | NOAUTOPAGE]

 [OPERPURGE]

 [FMHPARM(name)]

 [LAST]

Service:

Basic Mapping Support

Setup:

None

Options:

ALL

AUTOPAGE

CURRENT

FMHPARM(name)

LAST

NOAUTOPAGE

OPERPURGE

RELEASE

RETAIN

SET(pointer-ref)

TRAILER(data-area)

TRANSID(name)

Elastic COBOL Programmer’s Guide 114

Conditions:

IGREQCD

INVREQ

RETPAGE

TSIOERR

WRBRK

SEND PARTNSET

(THIS COMMAND IS UNSUPPORTED)

Syntax:

SEND {PARTNSET | PARTNET(name)}

Service:

Basic Mapping Support

Setup:

None

Options:

PARTNSET(name)

Conditions:

INVPARTNSET

INVREQ

SEND TEXT

Syntax:

SEND TEXT

 FROM(data-area)

 [LENGTH(data-value)]

 [CURSOR(data-value)]

 [FORMFEED]

Elastic COBOL Programmer’s Guide 115

 [ERASE [DEFAULT|ALTERNATE]]

 [PRINT]

 [FREEKB]

 [ALARM]

 [NLEOM]

 [FMHPARM(name)]

 [LDC(name) | [OUTPARTN(name)] [ACTPARTN(name)]]

 [MSR(data-value)]

Service:

Basic Mapping Support

Setup:

None

Options:

FROM(data-area)

LENGTH(data-value)

CURSOR(data-value)

FORMFEED

ERASE

DEFAULT

ALTERNATE

PRINT

FREEKB

ALARM

NLEOM

FMHPARM(name)

LDC(name)

OUTPARTN(name)

ACTPARTN(name)

MSR(data-value)

Elastic COBOL Programmer’s Guide 116

Conditions:

IGREQCD

IGREQID

INVLDC

INVPARTN

INVREQ

LENGERR

RETPAGE

TSIOERR

WRBRK

SIGNOFF

This command is dependent upon the capabilities of the External Security
Manager.

Syntax:

SIGNOFF

Service:

Security

Setup:

None

Options:

None

Conditions:

INVREQ Invalid request.

SIGNON

This command is dependent upon the capabilities of the External Security
Manager.

Elastic COBOL Programmer’s Guide 117

Syntax:

SIGNON

USERID(data-value)

[ESMREASON(data-area)]

[ESMRESP(data-area)]

[GROUPID(data-value)]

[LANGUAGECODE(data-value) | NATLANG(data-value)]

[LANGINUSE(data-area)]

[NATLANGINUSE(data-area)]

[PASSWORD(data-value)]

[NEWPASSWORD(data-value)]

[OIDCARD(data-value)]

Service:

Security

Setup:

None

Options:

ESMREASON(data-area)

Retrieves the external security manager reason code.

ESMRESP(data-area)

Retrieves the external security manager response code.

GROUPID(data-value)

Specifies the group ID for a user.

LANGUAGECODE(data-value)

Specifies the 3-character language code.

LANGINUSE(data-area)

Retrieves the 3-character language code assigned by login.

NATLANG(data-value)

Specifies the 1-character language code.

NATLANGINUSE(data-area)

Retrieves the 1-character language code assigned by login.

Elastic COBOL Programmer’s Guide 118

NEWPASSWORD(data-value)

Specifies the new user password.

OIDCARD(data-value)

Specifies a 65-byte magnetic strip value.

PASSWORD(data-value)

Specifies the current user password.

USERID(data-value)

Specifies the user ID.

Conditions:

INVREQ Invalid request.

NOTAUTH Not authorized.

USERIDERR The user ID is invalid.

SPOOLCLOSE

Close the spool file.

Syntax:

SPOOLCLOSE TOKEN(data-area)

 [KEEP | DELETE]

Service:

Spool

Setup:

A spool queue for output is defined as:

spool[.userid[.class[.node]]]=uri

and a spool queue for input as:

spool[.userid[.class]]=uri

Options:

TOKEN(data-area)

The 8-character token contents determine the spool file to be closed. It
must be one opened previously by SPOOLOPEN.

Elastic COBOL Programmer’s Guide 119

KEEP

Specifies disposition of the closing spool file.

For input, the same spool file will be read at the next open input.

For output, the spool file is to be passed to its destination node.

DELETE

Specifies disposition of the closing spool file.

For input, the next open is the next spool file will be opened at the next open
input.

For output, the spool file is to be purged.

Conditions:

NOSPOOL

 4 The specified spool file could not be found. The token
may be invalid.

NOTOPEN

8 The spool file is not open, and so could not be closed.

SPOOLOPEN INPUT

Open a spool file for input.

Syntax:

SPOOLOPEN INPUT TOKEN(data-area)

USERID(data-value)

[CLASS(data-value)]

Service:

 Spool

Setup:

spool[.userid[.class]]=uri

Options:

TOKEN(data-area)

The 8-character token contents determine the spool file to be closed. It
must be one opened previously by SPOOLOPEN.

Elastic COBOL Programmer’s Guide 120

USERID(data-value)

Specifies the user id to be associated with the spool file.

CLASS(data-value)

Specifies a one (1) character class designation.

Conditions:

 NOSPOOL

4 The specified spool file could not be found. The token
may be invalid.

INVREQ

16 USERID not specified.

36 Neither INPUT nor OUTPUT was specified.

ILLOGIC

3 Invalid CLASS value.

SPOOLOPEN OUTPUT

Open a spool file for output.

Syntax:

SPOOLOPEN OUTPUT TOKEN(data-area)

 USERID(data-value)

 NODE(data-value)

 [CLASS(data-value)]

 OUTDESCR(pointer-ref)

 [NOCC | ASA | MCC]

 [PRINT | PRINT [RECORDLENGTH(data-value)] | PUNCH]

Service:

 Spool

Setup:

spool[.userid[.class[.node]]]=uri

Elastic COBOL Programmer’s Guide 121

Options:

TOKEN(data-area)

The 8-character token contents determine the spool file to be closed. It
must be one opened previously by SPOOLOPEN.

USERID(data-value)

Specifies the user id to be associated with the spool file.

CLASS(data-value)

Specifies a one (1) character class designation.

NODE(data-value)

Specifies the eight (8) character destination node.

OUTDESCR(pointer-ref)

The OUTDESCR option is not supported, and will raised an
UNSUPPORTED_OPTION condition if used

NOCC

Requests that the records in the spool file do not include internal carriage
controls.

ASA

Requests that records in the spool file begin with an ASA carriage-control
character.

MCC

Requests that records in the spool file begin with an IBM Machine Command
Code character.

PRINT

The default, specifies that large records (up to 32760 bytes) may be sent to
the spool.

RECORDLENGTH(data-value)

Specifies the maximum length of a record in the spool file. The default is
32760.

PUNCH

Specifies that the record length is 80.

Conditions:

NOSPOOL

4 The specified spool file could not be found.
The token may be invalid.

INVREQ

Elastic COBOL Programmer’s Guide 122

16 USERID not specified.

20 NODE not specified.

36 Neither INPUT nor OUTPUT was specified.

ILLOGIC

3 Invalid CLASS value.

LENGERR RECORDLENGTH was invalid, not between 0
and 32760. RESP2 contains the invalid valid.

UNSUPPORTED_OPTIO
N

OUTDESCR is not supported.

SPOOLREAD

Read data from a spool file opened for input.

Syntax:

SPOOLREAD TOKEN(data-area)

 INTO(data-area)

 [MAXFLENGTH(data-value)]

 [TOFLENGTH(data-area)]

Service:

 Spool

Setup:

spool[.userid[.class]]=uri

Options:

TOKEN(data-area)

The 8-character token contents determine the spool file to be closed. It
must be one opened previously by SPOOLOPEN.

INTO(data-area)

Specifies the data area to which the read record is copied.

MAXFLENGTH(data-value)

Specifies the maximum length of the input record.

Elastic COBOL Programmer’s Guide 123

TOFLENGTH(data-area)

Returns the length of the data read.

Conditions:

ENDFILE The spool file has been completely read.

ILLOGIC

3 The CLASS is invalid.

INVREQ

24 The INTO is not specified

NOSPOOL

4 The specified spool file could not be found. The token
may be invalid.

NOTOPEN

8 The spool file is not open.

12 The spool file was opened for output.

SPOOLWRITE

Write data to a spool file opened for output.

Syntax:

SPOOLWRITE TOKEN(data-area)

 FROM(data-area)

 [MAXFLENGTH(data-value)]

 [FLENGTH(data-value)]

 [LINE | PAGE]

Service:

 Spool

Setup:

spool[.userid[.class[.node]]]=uri

Elastic COBOL Programmer’s Guide 124

Options:

TOKEN(data-area)

The 8-character token contents determine the spool file to be closed. It
must be one opened previously by SPOOLOPEN.

FROM(data-value)

Specifies the data record to write to the spool file.

FLENGTH(data-area)

Specifies the length of the data record to write to the spool file. The length
must be between 1 and the record length specified on the open.

LINE

Specifies LINE format.

PAGE

Specifies PAGE format.

Conditions:

ENDFILE The spool file has been completely read.

ILLOGIC

3 The CLASS is invalid.

INVREQ

28 The FROM is not specified.

NOSPOOL

4 The specified spool file could not be found. The token
may be invalid.

NOTOPEN

8 The spool file is not open.

16 The spool file was opened for input.

LENGERR The length is not between 1 and the opened record
length.

START

Start a separate task at a specific time.

The separate task is executed as a JEE message bean. It has no terminal
and executed in the background.

Elastic COBOL Programmer’s Guide 125

INTERVAL or AFTER specifies a period of time, whereas TIME or AT
specifies the final time itself.

Syntax:

START

 [TRANSID(data-value)]

 [REQID(data-value)]

 [INTERVAL(hhmmss)]

 [AFTER

[HOURS(data-value)]

[MINUTES(data-value)]

[SECONDS(data-value)]

]

 [TIME(hhmmss)]

 [AT

 [HOURS(data-value)]

 [MINUTES(data-value)]

 [SECONDS(data-value)]

]

 [FROM(data-area) [LENGTH(data-value) [FMH]]]

 [USERID(data-value) | TERMID(data-value)]

 [SYSID(data-value)]

 [RTRANSID(data-value)]

 [RTERMID(data-value)]

 [QUEUE(data-value)]

 [NOCHECK]

 [PROTECT]

Service:

Interval Control

Setup:

queue[.<sysid>].etpsysq=jms:<message_queue_jndi_name>

The default Elastic Transaction Platform System Queue is etpsysq_<sysid>.
Each deployment has its own system message queue.

<message_queue_jndi_name>.factory=<jms_factory_jndi_name>

Elastic COBOL Programmer’s Guide 126

If not present, then the jms.default.factory setting is used.

<message_queue_jndi_name>.name=<jms_login_user_name>

<message_queue_jndi_name>.password=<jms_login_password>

The user and password are only required if JMS is setup to require them.

Additionally, the transaction must be setup the same as for link wherever the
start message will be received. The transaction property restart may be set
to allow the transaction to be automatically restarted upon failure.

Options:

TRANSID(data-value)

Specifies the transaction ID to execute.

REQID(data-value)

Specifies a request ID through which this command may be cancelled using
the CANCEL command. The request ID is valid only within the same
session.

INTERVAL(hhmmss)

Specifies an interval of time duration data-value. The format is a single
number with two-digits each hour, minute, second.

TIME(hhmmss)

Specifies a final time data-value. The format is a single number with two-
digits each hour, minute, second.

AFTER

AFTER specifies that HOURS, MINUTES and SECONDS refers to an
interval duration.

AT

AT specifies that HOURS, MINUTES and SECONDS refers to a final time.

HOURS(data-value)

Specifies the number of hours, and it must be within 0..99.

MINUTES(data-value)

Specifies the number of minutes, and it must be within 0..59 if other HOURS
or SECONDS is specified.

SECONDS(data-value)

Specifies the number of seconds, and it must be within 0..59 if other HOURS
or MINUTES is specified.

FROM(data-area)

Specifies the user data area to be passed to the new task.

LENGTH(data-value)

Elastic COBOL Programmer’s Guide 127

Specifies the length of the user data area to be passed to the new task.

FMH

Specifies that the user data contains function management headers.

USERID(data-value)

Specifies the user ID to be used for the new task.

TERMID(data-value)

Specifies the terminal ID for the new task. As all terminals are virtual
bridges, and the new task may not have a terminal, this option is not
supported. Any virtual terminal must activate its own task. The way to
associate a terminal with a timed task is to have the client virtual terminal
poll a transaction at the specified time, with all such client-driven interaction
controlled by the client.

SYSID(data-value)

Specifies the system ID for the new task. This is used in finding the correct
system message queue.

RTRANSID(data-value)

Specifies a 4-character name passed to the new task, traditionally a
transaction ID.

RTERMID(data-value)

Specifies a 4-character name passed to the new task, traditionally a terminal
ID.

QUEUE(data-value)

Specifies an 8-character name passed to the new task, traditionally a
temporary storage queue name.

NOCHECK

Specifies that less error checking will occur for possibly improved
performance. This option is ignored.

PROTECT

Specifies that a syncpoint must occur before the START may take place.

Conditions:

TRANSIDERR The transaction ID is invalid.

LENGERR The length is less than zero (0).

INVREQ RESP2

 4 Hours are invalid.
5 Minutes are invalid.
6 Seconds are invalid.

QIDERR The system message queue used to pass
start messages has failed.

Elastic COBOL Programmer’s Guide 128

IOERR Communication with the system message
queue used to pass start messages has
failed.

SUSPEND

Suspend a task, allowing other tasks to proceed first where the task
scheduler permits. This is otherwise known as a yield.

Syntax:

SUSPEND

Service:

Task Control

Options:

None

START ATTACH

Start a separate task immediately.

The separate task is executed as a JEE message bean. It has no terminal
and executed in the background.

INTERVAL or AFTER specifies a period of time, whereas TIME or AT
specifies the final time itself.

Syntax:

START ATTACH

 [TRANSID(data-value)]

 [FROM(data-area) [LENGTH(data-value)]]

Service:

Interval Control

Setup:

Elastic COBOL Programmer’s Guide 129

queue[.<sysid>].etpsysq=jms:<message_queue_jndi_name>

The default Elastic Transaction Platform System Queue is etpsysq_<sysid>.
Each deployment has its own system message queue.

<message_queue_jndi_name>.factory=<jms_factory_jndi_name>

If not present, then the jms.default.factory setting is used.

<message_queue_jndi_name>.name=<jms_login_user_name>

<message_queue_jndi_name>.password=<jms_login_password>

The user and password are only required if JMS is setup to require them.

Additionally, the transaction must be setup the same as for link wherever the
start message will be received. The transaction property restart may be set
to allow the transaction to be automatically restarted upon failure.

Options:

TRANSID(data-value)

Specifies the transaction ID to execute.

REQID(data-value)

Specifies a request ID through which this command may be cancelled using
the CANCEL command. The request ID is valid only within the same
session.

Conditions:

EXPIRED The interval has already expired.

INVREQ RESP2

 4 Hours are invalid.
5 Minutes are invalid.
6 Seconds are invalid.

START BREXIT

(THIS COMMAND IS UNSUPPORTED)

The START BREXIT command is not supported. The Elastic Transaction
Platform always operates under an externally defined bridge.

Syntax:

START

 {BREXIT | BREXIT(data-value)}

 TRANSID(data-value)

 [BRDATA(data-area) [BRDATALENGTH(data-value)]

 [USERID(data-value)]

Elastic COBOL Programmer’s Guide 130

Service:

Interval Control

Options:

BREXIT(data-value)

TRANSID(data-value)

BRDATA(data-area)

BRDATALENGTH(data-value)

USERID(data-value)

STARTBR

Start browsing a file, preparing it for use with READNEXT or READPREV.
The browse must be terminated using ENDBR when finished.

Currently, the only records available during a browse operation are those
which are in the scope of the STARTBR operation. A READPREV cannot
go further back than STARTBR's browse implies. A READNEXT cannot go
further forward than STARTBR's browse implies.

Syntax:

STARTBR

 {FILE(data-value) | DATASET(data-value)}

 RIDFLD(data-area) [KEYLENGTH(data-value) [GENERIC]]

 [REQID(data-value)]

 [SYSID(data-value)]

 [RBA | RRN | DEBKEY | DEBREC]

 [GTEQ | EQUAL]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

Elastic COBOL Programmer’s Guide 131

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

DEBKEY

Deblocking by key in BDAM, this option is not used.

DEBREC

Deblocking by record in BDAM, this option is not used.

EQUAL

Specifies that the record's key must be equal to the given record ID field.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

GENERIC

Specifies that the record ID field is generic, matching any with the given
contents equal up the length of keylength.

GTEQ

Specifies that the record's key must be greater than or equal to the given
record ID field.

KEYLENGTH(data-value)

Specifies the length of the record ID key field.

RBA

Specifies that the key is by relative byte address.

REQID(data-value)

Specifies a request ID to be used in browsing operations.

RIDFLD(data-area)

Specifies the record ID field, the key used to search for the record. This
data item is mapped to the column marked with an ridfld attribute in the XML
file descriptor.

RRN

Specifies that the key is by relative record number.

SYSID(data-value)

Elastic COBOL Programmer’s Guide 132

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

Conditions:

FILENOTFOUND The file itself could not be found.

ILLOGIC A logical error occurred.

INVREQ Invalid request.

IOERR An input/output error occurred, such as an
invalid SQL query.

NOTAUTH Not authorized.

NOTFND The record was not found, such as an invalid
record ID field.

NOTOPEN The file is not open.

SUSPEND

Suspend a task, allowing other tasks to proceed first where the task
scheduler permits. This is otherwise known as a yield.

Syntax:

SUSPEND

Service:

Task Control

Setup:

None

Options:

None

Conditions:

None

Elastic COBOL Programmer’s Guide 133

SYNCPOINT

Commit a unit of work within a task. A commit occurs automatically when a
task ends normally.

Syntax:

SYNCPOINT

Service:

Recovery

Options:

None

Conditions:

ROLLBACK Occurs when the task cannot commit, but rather is
forced to rollback. Generally, this will occur when a
remotely linked program must rollback.

SYNCPOINT ROLLBACK

Rollback a unit of work within a task. A rollback occurs automatically when a
task ends abnormally.

EIBSYNRB, EIBERR and EIBERRCD may be set.

Syntax:

SYNCPOINT ROLLBACK

Service:

Recovery

Options:

None

Elastic COBOL Programmer’s Guide 134

Conditions:

INVREQ RESP2

200 SYNCPOINT ROLLBACK failed.

TRACE

Enable or disable tracing facilities. The trace command affects only the
environment in which it is executed, not the global environment.

Syntax:

TRACE {ON | OFF}

 [SYSTEM]

 [EI]

 [USER]

 [SINGLE]

Setup:

trace.master={true|false}

The trace.master switch enables or disables all physical tracing. If
trace.master=false, then the tracing commands function but no actual output
is created.

trace=journal_name

The tracing destination is a journal name, which in turn is specified through
journal.name=journal_protocol.

Service:

TraceControl

Options:

ON

TRACE settings are enabled.

OFF

TRACE settings are disabled.

SYSTEM

TRACE setting applies to all tracing system activity.

EI

Elastic COBOL Programmer’s Guide 135

TRACE settings applies to EXEC interface activity.

USER

TRACE setting applies to user entries.

SINGLE

TRACE setting applies only to user trace entries within the current task. All
USER entries are only within the current task, not global, so this is no
different than USER.

UNLOCK

Release file locks. As SQL uses a different mechanism for concurrency
control, this command does nothing.

Syntax:

UNLOCK

 {FILE(data-value) | DATASET(data-value)}

 [TOKEN(data-area)]

 [SYSID(data-value)]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

FILE(data-value)

Elastic COBOL Programmer’s Guide 136

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

SYSID(data-value)

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

TOKEN(data-area)

Specifies a token relating this REWRITE back to a READ.

Conditions:

None

UPDATE COUNTER

Update the current value of the named counter.

Syntax:

UPDATE { COUNTER(name) | DCOUNTER(name) }

[POOL(name)]

 VALUE(data-value)

 [COMPAREMIN(data-value)]

 [COMPAREMAX(data-value)]

Service:

Counter

Setup:

pool.name=redirected_pool_name

If not specified, the pool name is the given name.

counter.jndi=counter_jndi_name

Specify the JNDI name of the Counter service. The default is
'CounterService'.

Options:

COUNTER(name)

Specifies the name of the 32-bit counter.

Elastic COBOL Programmer’s Guide 137

DCOUNTER(name)

Specifies the name of the 64-bit counter.

POOL(name)

Specifies the name of the pool of counters. Each Counter service maintains
its own pools of counters.

VALUE(data-value)

Specifies the value of the counter.

COMPAREMIN(data-value)

Specifies a minimum value against which to compare the value. If the value
is greater than or equal, then no action is taken; if less than the minimum, a
condition is raised.

If COMPAREMIN>COMPAREMAX, then either condition must be true rather
than both.

Success of the command is conditional upon the comparison.

COMPAREMAX(data-value)

Specifies a maximum value against which to compare the value. If the value
is less than or equal, then no action is taken; if less than the minimum, a
condition is raised.

If COMPAREMIN>COMPAREMAX, then either condition must be true rather
than both.

Success of the command is conditional upon the comparison.

Conditions:

INVREQ RESP2

201 Named counter invalid.

301 Server error.

303 Unexpected error, such as connectivity loss.

304 Invalid pool.

305 Cannot connect to server.

306 Server abend.

308 This condition cannot occur (options table not
loadable).

309 This condition cannot occur (options table error).

310 This condition cannot occur (options user exit).

403 The pool name contains invalid characters.

404 The counter name contains invalid characters.

406 The increment is invalid; it cannot be larger than
the total range of the counter.

SUPPRESSED RESP2

103 The value is not within COMPAREMIN and

Elastic COBOL Programmer’s Guide 138

COMPAREMAX, or beyond the limits if only one of
COMPAREMIN and COMPAREMAX is used.

UNLOCK

Release file locks. As SQL uses a different mechanism for concurrency
control, this command does nothing.

Syntax:

UNLOCK

 {FILE(data-value) | DATASET(data-value)}

 [TOKEN(data-area)]

 [SYSID(data-value)]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

SYSID(data-value)

Elastic COBOL Programmer’s Guide 139

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

TOKEN(data-area)

Specifies a token relating this REWRITE back to a READ.

Conditions:

None

VERIFY PASSWORD

This command is dependent upon the capabilities of the External Security
Manager.

Syntax:

VERIFY PASSWORD(data-value)

 USERID(data-value)

 [CHANGETIME(data-area)]

 [DAYSLEFT(data-area)]

 [ESMREASON(data-area)]

 [ESMRESP(data-area)]

 [EXPIRYTIME(data-area)]

 [INVALIDCOUNT(data-area)]

 [LASTUSETIME(data-area)]

Service:

Security

Setup:

None

Options:

PASSWORD(data-value)

Specifies the user's password.

USERID(data-value)

Specifies the user id.

Elastic COBOL Programmer’s Guide 140

CHANGETIME(data-area)

Retrieves data and time password last changed, as in ABSTIME.

DAYSLEFT(data-area)

Retrieves number of days until password expires, -1 if no expiration.

ESMREASON(data-area)

Retrieves the external security manager reason code.

ESMRESP(data-area)

Retrieves the external security manager response code.

EXPIRYTIME(data-area)

Retrieves date and time password expires, as in ABSTIME.

INVALIDCOUNT(data-area)

Retrieves count of invalid password attempts by user.

LASTUSETIME(data-area)

Retrieves last time user id was used, as in ABSTIME.

Conditions:

INVREQ Invalid request.

NOTAUTH Not authorized.

USERID Invalid user ID.

WAIT EXTERNAL

(THIS COMMAND IS UNSUPPORTED)

This command is not supported and not intended for COBOL usage.

Synchronize events.

Syntax:

WAIT EXTERNAL

 ECBLIST(pointer-value)

 NUMEVENTS(data-value)

 {PURGEABLE | PURGEABILITY(cvda) | NOTPUREGABLE}

 [NAME(data-value)]

Service:

Task Management

Elastic COBOL Programmer’s Guide 141

Setup:

None

Options:

None

Conditions:

None

WAIT EVENT

Wait for a post event to occur.

Syntax:

WAIT EVENT

 ECADDR(pointer-value)

 [NAME(data-value)]

Service:

Interval Control

Setup:

None

Options:

ECADDR(pointer-value)

Specifies the pointer returned via the POST command. This pointer-value
cannot be another source, or the post will wait indefinitely.

NAME(data-value)

Specifies a name for the wait. This value is not currently used.

Conditions:

EXPIRED The interval has already expired.

INVREQ RESP2

Elastic COBOL Programmer’s Guide 142

4 Hours are invalid.
5 Minutes are invalid.
6 Seconds are invalid.

WAIT JOURNALNAME

Syntax:

WAIT JOURNALNAME(data-value)

 [REQID(data-value)]

Service:

Journal

Setup:

journal.<name>=<journal_protocol_reference>

Options:

JOURNALNAME(data-value)

Data-value is a two-digit binary value, representing the journal name
DFHJnn, where nn is the two-digit value.

REQID(data-value)

Specify the request ID obtained from WRITE JOURNALNAME on which to
wait. Note that many journal protocols will wait on the entire journal to be
synchronized rather than only a particular request.

Conditions:

INVREQ There have been no writes on which to wait.

IOERR Input/output error.

JIDERR The journal reference is unknown.

NOTOPEN The journal itself was recognized but could not be
opened.

WAIT JOURNALNUM

Wait for the journal to be completely written before continuing.

Elastic COBOL Programmer’s Guide 143

Syntax:

WAIT JOURNALNUM(data-value)

 [REQID(data-value)]

Service:

Journal

Setup:

journal.DFHJ<nn>=<journal_protocol_reference>

Options:

JOURNALNUM(data-value)

Data-value is a two-digit binary value, representing the journal name
DFHJnn, where nn is the two-digit value.

REQID(data-value)

Specify the request ID obtained from WRITE JOURNALNUM on which to
wait. Note that many journal protocols will wait on the entire journal to be
synchronized rather than only a particular request.

Conditions:

INVREQ There have been no writes on which to wait.

IOERR Input/output error.

JIDERR The journal reference is unknown.

NOTOPEN The journal itself was recognized but could not be
opened.

WAITCICS

(THIS COMMAND IS UNSUPPORTED)

This command is not supported and not intended for COBOL usage.

Syntax:

WAITCICS

ECBLIST(pointer-value)

 NUMEVENTS(data-value)

 {PURGEABLE | PURGEABILITY(cvda) | NOTPURGEABLE}

Elastic COBOL Programmer’s Guide 144

 [NAME(data-value)]

Service:

Task Management

Setup:

None

Options:

None

Conditions:

None

WAIT JOURNALNAME

Syntax:

WAIT JOURNALNAME(data-value)

 [REQID(data-value)]

Service:

Journal

Options:

JOURNALNAME(data-value)

Data-value is a two-digit binary value, representing the journal name
DFHJnn, where nn is the two-digit value.

REQID(data-value)

Specify the request ID obtained from WRITE JOURNALNAME on which to
wait. Note that many journal protocols will wait on the entire journal to be
synchronized rather than only a particular request.

Conditions:

INVREQ There have been no writes on which to wait.

Elastic COBOL Programmer’s Guide 145

IOERR Input/output error.

JIDERR The journal reference is unknown.

NOTOPEN The journal itself was recognized but could not be
opened.

WAIT JOURNALNUM

Wait for the journal to be completely written before continuing.

Syntax:

WAIT JOURNALNUM(data-value)

 [REQID(data-value)]

Service:

Journal

Options:

JOURNALNUM(data-value)

Data-value is a two-digit binary value, representing the journal name
DFHJnn, where nn is the two-digit value.

REQID(data-value)

Specify the request ID obtained from WRITE JOURNALNUM on which to
wait. Note that many journal protocols will wait on the entire journal to be
synchronized rather than only a particular request.

Conditions:

INVREQ There have been no writes on which to wait.

IOERR Input/output error.

JIDERR The journal reference is unknown.

NOTOPEN The journal itself was recognized but could not be
opened.

Elastic COBOL Programmer’s Guide 146

WEB ENDBROWSE COOKIE

End the browsing of HTTP cookies.

Syntax:

WEB ENDBROWSE COOKIE

Service:

Web

Options:

None

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

4 There was no prior WEB STARTBROWSE COOKIE.

WEB ENDBROWSE FORMFIELD

End the browsing of HTTP form fields.

Syntax:

WEB ENDBROWSE FORMFIELD

Service:

Web

Options:

None

Conditions:

INVREQ

1 The command is a not a Web application.

Elastic COBOL Programmer’s Guide 147

3 There is no HTTP request.

4 There was no prior WEB STARTBROWSE
FORMFIELD.

WEB ENDBROWSE HTTPHEADER

End the browsing of HTTP headers.

Syntax:

WEB ENDBROWSE HTTPHEADER

Service:

Web

Options:

None

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

4 There was no prior WEB STARTBROWSE
HTTPHEADER.

WEB EXTRACT

Extract information about the Web HTTP request.

Note that not all fields are available from all HTTP requests.

Syntax:

WEB EXTRACT

 [HTTPMETHOD(data-area) METHODLENGTH(data-area)]

 [HTTPVERSION(data-area) VERSIONLEN(data-area)]

 [PATH(data-area) PATHLENGTH(data-area)]

 [REQUESTTYPE(cvda)]

 [AUTHTYPE(data-area) AUTHLENGTH(data-area)]

Elastic COBOL Programmer’s Guide 148

 [CONTEXTPATH(data-area) CONTEXTPATHLENGTH(data-area)]

 [PATHTRANSLATED(data-area) PATHTRANSLATEDLENGTH(data-
area)]

 [QUERYSTRING(data-area) QUERYSTRINGLENGTH(data-area)]

 [REMOTEUSER(data-area) REMOTEUSERLENGTH(data-area)]

 [REQUESTEDSESSIONID(data-area)
REQUESTEDSESSIONIDLENGTH(data-area)]

 [REQUESTURI(data-area) REQUESTURILENGTH(data-area)]

 [REQUESTURL(data-area) REQUESTURLLENGTH(data-area)]

 [SERVLETPATH(data-area) SERVLETPATHLENGTH(data-area)]

 [CHARACTERENCODING(data-area)
CHARACTERENCODINGLENGTH(data-area)]

 [CONTENTLENGTH(data-area)]

 [CONTENTTYPE(data-area) CONTENTTYPELENGTH(data-area)]

 [LOCALE(data-area) LOCALELENGTH(data-area)]

 [PROTOCOL(data-area) PROTOCOLLENGTH(data-area)]

 [REMOTEADDR(data-area) REMOTEADDRLENGTH(data-area)]

 [REMOTEHOST(data-area) REMOTEHOSTLENGTH(data-area)]

 [SCHEME(data-area) SCHEMELENGTH(data-area)]

 [SERVERNAME(data-area) SERVERNAMELENGTH(data-area)]

 [SERVERPORT(data-area)]

 [SECURE(cvda)]

Service:

Web

Options:

HTTPMETHOD(data-area)

Returns the HTTP method (e.g. "GET").

METHODLENGTH(data-area)

Pass HTTPMETHOD buffer length, returns the length of the extracted
HTTPMETHOD.

HTTPVERSION(data-area)

Returns the HTTP version string (e.g. "HTTP/1.1").

VERSIONLEN(data-area)

Pass HTTPVERSION buffer length, returns the length of the extracted
HTTPVERSION.

Elastic COBOL Programmer’s Guide 149

PATH(data-area)

Returns the HTTP path string.

PATHLENGTH(data-area)

Pass PATH buffer length, returns the length of the extracted PATH.

REQUESTTYPE(cvda)

Returns HTTP or NONHTTP

AUTHTYPE(data-area)

AUTHLENGTH(data-area)

CONTEXTPATH(data-area)

(e.g. "/myapp").

CONTEXTPATHLENGTH(data-area)

PATHTRANSLATED(data-area)

PATHTRANSLATEDLENGTH(data-area)

QUERYSTRING(data-area)

Returns the query string from the URL, the portion after the question mark
(?). (e.g. "hl=en&ie=UTF-8&oe=UTF-8&q=Search+Query").

QUERYSTRINGLENGTH(data-area)

REMOTEUSER(data-area)

Returns the remote user if logged in (e.g. "root").

REMOTEUSERLENGTH(data-area)

REQUESTEDSESSIONID(data-area)

REQUESTEDSESSIONIDLENGTH(data-area)

REQUESTURI(data-area)

(e.g. "/myapp/myapp").

REQUESTURILENGTH(data-area)

REQUESTURL(data-area)

Returns the entire URL for this web request. (e.g.
"http://192.168.0.234:7001/myapp/myapp").

REQUESTURLLENGTH(data-area)

SERVLETPATH(data-area)

(e.g. "/myapp").

SERVLETPATHLENGTH(data-area)

CHARACTERENCODING(data-area)

Returns the character encoding.

http://192.168.0.15:7001/myapp/myapp

Elastic COBOL Programmer’s Guide 150

CHARACTERENCODINGLENGTH(data-area)

Returns length of CHARACTERENCODING.

CONTENTLENGTH(data-area)

Returns the content length.

CONTENTTYPE(data-area)

CONTENTTYPELENGTH(data-area)

LOCALE(data-area)

Returns the locale in language2_COUNTRY2 format. (e.g. "en_US").

LOCALELENGTH(data-area)

PROTOCOL(data-area)

(e.g. "HTTP/1.1").

PROTOCOLLENGTH(data-area)

REMOTEADDR(data-area)

Returns the remote machine's TCP/IP address. (e.g. "192.168.0.123").

REMOTEADDRLENGTH(data-area)

REMOTEHOST(data-area)

Returns the remote machine's hostname, if possible. (e.g.
"mycomputer.internal.myhost.com").

REMOTEHOSTLENGTH(data-area)

SCHEME(data-area)

(e.g. "http").

SCHEMELENGTH(data-area)

SERVERNAME(data-area)

(e.g. "192.168.0.234").

SERVERNAMELENGTH(data-area)

SERVERPORT(data-area)

Returns the server TCP/IP port.

SECURE(cvda)

Returns SSL or NOSSL.

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

 LENGERR

Elastic COBOL Programmer’s Guide 151

1 The passed LENGTH was less than zero (0).

WEB READ COOKIE

Retrieve named HTTP cookie.

Syntax:

WEB READ

COOKIE(data-area)

NAMELENGTH(data-value)

VALUE(data-area)

VALUELENGTH(data-area)

COMMENT(data-area) COMMENTLENGTH(data-area)
 DOMAIN(data-area) DOMAINLENGTH(data-area)

MAXAGE(data-area)

PATH(data-area) PATHLENGTH(data-area)

SECURE(cvda)

VERSION(data-area)

Service:

Web

Options:

COOKIE(data-area)

Specify the HTTP cookie to retrieve.

NAMELENGTH(data-value)

Specify the length of the HTTP cookie.

VALUE(data-area)

Retrieves the value of the HTTP cookie.

VALUELENGTH(data-area)

Pass the length of the VALUE buffer, retrieves the length of the VALUE.

COMMENT(data-area)

Retrieves the cookie's comment. (Comment is not supported by early
versions of JEE.)

COMMENTLENGTH(data-area)

Elastic COBOL Programmer’s Guide 152

Pass the length of the COMMENT buffer, retrieve the length of the retrieved
comment.

DOMAIN(data-area)

Retrieves the cookie's domain.

DOMAINLENGTH(data-area)

Pass the length of the DOMAIN buffer, retrieve the length of the retrieved
domain.

MAXAGE(data-area)

Retrieves the maximum age of the cookie.

PATH(data-area)

Retrieves the path of the cookie.

PATHLENGTH(data-area)

Pass the length of the PATH buffer, retrieve the length of the retrieved path.

SECURE(data-area)

Returns SECURE or NOSECURE, reflecting the status of cookie.

VERSION(data-area)

Returns the version of the cookie.

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

LENGERR

1 The passed VALUELENGTH was less than zero (0).

2 The cookie value was truncated, buffer too small.

NOTFND

1 The cookie could not be found.

WEB READ FORMFIELD

Retrieve named HTTP form field.

Elastic COBOL Programmer’s Guide 153

Syntax:

WEB READ

FORMFIELD(data-area)

NAMELENGTH(data-value)

VALUE(data-area)

VALUELENGTH(data-area)

Service:

 Web

Options:

FORMFIELD(data-area)

Specify the HTTP form field to retrieve.

NAMELENGTH(data-value)

Specify the length of the HTTP form field.

VALUE(data-area)

Retrieves the value of the HTTP form field.

VALUELENGTH(data-area)

Pass the length of the VALUE buffer, retrieves the length of the VALUE.

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

LENGERR

1 The passed VALUELENGTH was less than zero (0).

2 The form field value was truncated, buffer too small.

NOTFND

1 The cookie could not be found.

Elastic COBOL Programmer’s Guide 154

WEB READ HTTPHEADER

Retrieve named HTTP header.

Syntax:

WEB READ

HTTPHEADER(data-area)

NAMELENGTH(data-value)

VALUE(data-area)

VALUELENGTH(data-area)

Service:

Web

Options:

HTTPHEADER(data-area)

Specify the HTTP header to retrieve.

NAMELENGTH(data-value)

Specify the length of the HTTP header.

VALUE(data-area)

Retrieves the value of the HTTP header.

VALUELENGTH(data-area)

Pass the length of the VALUE buffer, retrieves the length of the VALUE.

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

LENGERR

1 The passed VALUELENGTH was less than zero (0).

2 The header value was truncated, buffer too small.

NOTFND

1 The header could not be found.

Elastic COBOL Programmer’s Guide 155

WEB READNEXT COOKIE

Retrieve the next HTTP cookie.

Syntax:

WEB READNEXT

COOKIE(data-area) NAMELENGTH(data-area)

VALUE(data-area) VALUELENGTH(data-area)

COMMENT(data-area) COMMENTLENGTH(data-area)
 DOMAIN(data-area) DOMAINLENGTH(data-area)

MAXAGE(data-area)

PATH(data-area) PATHLENGTH(data-area)

SECURE(cvda)

VERSION(data-area)

Service:

Web

Options:

COOKIE(data-area)

Retrieves the field name.

NAMELENGTH(data-area)

Pass the length of the FORMFIELD buffer, retrieve the length of the
FORMFIELD.

VALUE(data-area)

Retrieves the FORMFIELD's value.

VALUELENGTH(data-area)

Pass the length of the VALUE buffer, retrieve the length of the VALUE.

COMMENT(data-area)

Retrieves the cookie's comment. (Comment is not supported by early
versions of JEE.)

COMMENTLENGTH(data-area)

Pass the length of the COMMENT buffer, retrieve the length of the retrieved
comment.

DOMAIN(data-area)

Retrieves the cookie's domain.

Elastic COBOL Programmer’s Guide 156

DOMAINLENGTH(data-area)

Pass the length of the DOMAIN buffer, retrieve the length of the retrieved
domain.

MAXAGE(data-area)

Retrieves the maximum age of the cookie.

PATH(data-area)

Retrieves the path of the cookie.

PATHLENGTH(data-area)

Pass the length of the PATH buffer, retrieve the length of the retrieved path.

SECURE(data-area)

Returns SECURE or NOSECURE, reflecting the status of cookie.

VERSION(data-area)

Returns the version of the cookie.

Conditions:

ENDFILE The end of the HTTP headers has been reached.

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

4 There was no prior WEB STARTBROWSE COOKIE

LENGERR

1 The passed VALUELENGTH was less than zero (0).

4 The form field name was truncated, buffer too small.

5 The value was truncated, buffer too small.

WEB READNEXT FORMFIELD

Retrieve the next HTTP form field.

Syntax:

WEB READNEXT

FORMFIELD(data-area) NAMELENGTH(data-area)

VALUE(data-area) VALUELENGTH(data-area)

Service:

Web

Elastic COBOL Programmer’s Guide 157

Options:

FORMFIELD(data-area)

Retrieves the field name.

NAMELENGTH(data-area)

Pass the length of the FORMFIELD buffer, retrieve the length of the
FORMFIELD.

VALUE(data-area)

Retrieves the FORMFIELD's value.

VALUELENGTH(data-area)

Pass the length of the VALUE buffer, retrieve the length of the VALUE.

Conditions:

ENDFILE The end of the HTTP headers has been reached.

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

4 There was no prior WEB STARTBROWSE
FORMFIELD.

LENGERR

1 The passed length was less than zero (0).

4 The form field name was truncated, buffer too small.

5 The value was truncated, buffer too small.

WEB READNEXT HTTPHEADER

Retrieve the next HTTP header.

Syntax:

WEB READNEXT

HTTPHEADER(data-area) NAMELENGTH(data-area)

VALUE(data-area) VALUELENGTH(data-area)

Service:

 Web

Elastic COBOL Programmer’s Guide 158

Options:

HTTPHEADER(data-area)

Retrieves the HTTP header name.

NAMELENGTH(data-area)

Pass the length of the HTTPHEADER buffer, retrieve the length of the
HTTPHEADER.

VALUE(data-area)

Retrieves the HTTP header's value.

VALUELENGTH(data-area)

Pass the length of the VALUE buffer, retrieve the length of the VALUE.

Conditions:

ENDFILE The end of the HTTP headers has been reached.

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

4 There was no prior WEB STARTBROWSE
HTTPHEADER.

LENGERR

1 The passed length was less than zero (0).

4 The header name was truncated, buffer too small.

5 The value was truncated, buffer too small.

WEB RECEIVE

Receive all data from the HTTP request.

Syntax:

WEB RECEIVE

{ INTO(data-area) [MAXLENGTH(data-value)] | SET(ptr-ref) }
LENGTH(data-area)

 [TYPE(cvda)]

 [NOTRUNCATE]

 [CLNTCODEPAGE(name)]

 [HOSTCODEPAGE(name)]

Elastic COBOL Programmer’s Guide 159

Service:

Web

Options:

INTO(data-area)

Specifies the buffer to contain the data.

SET(ptr-ref)

Specifies a pointer, which will then point to the data.

LENGTH(data-area)

Returns the length of the data received.

MAXLENGTH(data-value)

Specifies the maximum length of data to receive.

TYPE(cvda)

Returns HTTP or NONHTTP.

NOTRUNCATE

If the data exceeds the maximum amount, do not truncate; rather, return it
on subsequent RECEIVE commands.

CLNTCODEPAGE(name)

Specifies the name of the client's codepage.

HOSTCODEPAGE must also be specified.

HOSTCODEPAGE(name)

Specifies the name of the host's codepage.

CLNTCODEPAGE must also be specified.

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

LENGERR

1 The passed length was less than zero (0).

2 The length is positive, but exceeded the maximum.

WEB RETRIEVE

Retrieve a document.

Elastic COBOL Programmer’s Guide 160

Syntax:

WEB RETRIEVE DOCTOKEN(data-area)

Service:

Web

Options:

DOCTOKEN(data-area)

Specifies 16-byte buffer to contain DOCTOKEN of document previously sent
using WEB SEND.

Conditions:

INVREQ

1 The command is a not a Web application.

2 There was no prior WEB SEND command.

WEB SEND

Send documents or text to the HTTP client.

Syntax:

WEB SEND

{

DOCTOKEN(name)

 [CONTENTTYPE(data-area) CONTENTTYPELENGTH(data-value)] |

TEXT(data-value) |

TEXTLINE(data-value) |

HTML(data-value) |

HTMLLINE(data-value)

}

 [CLNTCODEPAGE(name)]

 [STATUSCODE(data-value)]

 [STATUSTEXT(data-area) LENGTH(data-value)]

Elastic COBOL Programmer’s Guide 161

Service:

Web

Options:

DOCTOKEN(name)

Specifies the 16-byte name of the document to send to the web browser
client. This comes from the document commands.

CONTENTTYPE(data-area)

Specifies a CONTENTTYPE header for the output document.

CONTENTTYPELENGTH(data-value)

Specifies the length of the CONTENTTYPE data.

TEXT(data-value)

Specifies text to send to the web browser client. HTML special characters
are automatically escaped, e.g. < to <.

TEXTLINE(data-value)

Specifies text line to send to the web browser client; a
 is automatically
appended. HTML special characters are automatically escaped, e.g. < to
<.

HTML(data-value)

Specifies HTML to send to the web browser client. The content is passed
through directly to the client.

HTMLLINE(data-value)

Specifies HTML line to send to the web browser client; a
 is
automatically appended. The content is passed through directly to the client.

CLNTCODEPAGE(name)

Specifies the client codepage.

STATUSCODE(data-value)

Specify the HTTP status code; must be valid HTTP status code.

STATUSTEXT(data-area)

Specify text describing the status code.

LENGTH(data-value)

Specify length of STATUSTEXT.

Conditions:

INVREQ

1 The command is a not a Web application.

Elastic COBOL Programmer’s Guide 162

 NOTFND

1 No such document.

7 Unknown client codepage.

WEB STARTBROWSE COOKIE

Syntax:

WEB STARTBROWSE COOKIE

Service:

Web

Options:

None

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

WEB STARTBROWSE FORMFIELD

Start browsing form fields.

Syntax:

WEB STARTBROWSE FORMFIELD

Service:

Web

Options:

None

Elastic COBOL Programmer’s Guide 163

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

WEB STARTBROWSE HTTPHEADER

Start browsing HTTP headers.

Syntax:

WEB STARTBROWSE HTTPHEADER

Service:

Web

Options:

None

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

WEB WRITE COOKIE

Set an HTTP cookie.

A cookie is stored on the client machine, where it may not be stored in a
secure manner. So never store secure information within a cookie; rather,
use the cookie as a reference to another secure source. Also, supported
cookie sizes may be very small, so do not rely on large quantities of
information being stored.

Syntax:

WEB WRITE

COOKIE(data-area) NAMELENGTH(data-value)

VALUE(data-area) VALUELENGTH(data-value)

Elastic COBOL Programmer’s Guide 164

COMMENT(data-area) COMMENTLENGTH(data-area)
 DOMAIN(data-area) DOMAINLENGTH(data-area)

MAXAGE(data-area)

PATH(data-area) PATHLENGTH(data-area)

[SECURE(cvda) | SECURE | NOSECURE]

VERSION(data-area)

Service:

Web

Options:

COOKIE(data-area)

Specifies the HTTP cookie name.

The name is an RFC 2109 name, so it may contain only ASCII alphanumeric
characters, not white space, commas, or semicolons, and it may not begin
with a dollar sign.

NAMELENGTH(data-value)

Specifies the length of the HTTP cookie name.

VALUE(data-area)

Specifies the value of the HTTP cookie.

With Version 0 cookies, the value should not contain white space, brackets,
parentheses, equals signs, commas, double quotes, slashes, question
marks, at signs, colons or semicolons; empty values may behave differently
in different browsers.

VALUELENGTH(data-value)

Specifies the length of the value.

COMMENT(data-area)

Specifies the cookie's comment. The comment describes the cookie, but it
is not used for programmatic purposes.

COMMENTLENGTH(data-area)

Specifies the length of the COMMENT buffer.

DOMAIN(data-area)

Specifies the cookie's domain.

DOMAINLENGTH(data-area)

Specifies the length of the DOMAIN buffer.

MAXAGE(data-area)

Elastic COBOL Programmer’s Guide 165

Specifies the maximum age of the cookie in seconds. -1 indicates until the
browser is shutdown.

PATH(data-area)

Specifies the path of the cookie.

PATHLENGTH(data-area)

Specifies the length of the PATH buffer, retrieve the length of the retrieved
path.

SECURE(data-area)

Specifies SECURE or NOSECURE, reflecting whether the cookie may be
sent over an insecure channel.

VERSION(data-area)

Specifies the version of the cookie. Version 0 is the original Netscape
specification, Version 1 complies with RFC 2109. RFC 2109 is still
considered experimental, so use it only for experimentation, not for
production sites.

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

WEB WRITE HTTPHEADER

Set an HTTP header.

Syntax:

WEB WRITE

HTTPHEADER(data-area) NAMELENGTH(data-value)

VALUE(data-area) VALUELENGTH(data-value)

ACCUMULATE

Service:

Web

Options:

HTTPHEADER(data-area)

Specifies the HTTP header name.

Elastic COBOL Programmer’s Guide 166

NAMELENGTH(data-value)

Specifies the length of the HTTP header name.

VALUE(data-area)

Specifies the value of the HTTP header.

VALUELENGTH(data-value)

Specifies the length of the value.

ACCUMULATE

Add the header rather than replacing it if already present.

Conditions:

INVREQ

1 The command is a not a Web application.

3 There is no HTTP request.

WRITE

Write a record to a file.

Syntax:

WRITE

 {FILE(data-value) | DATASET(data-value)}

 [MASSINSERT]

 FROM(data-area)

 RIDFLD(data-area)

 [KEYLENGTH(data-value)]

 [SYSID(data-value) LENGTH(data-area) | LENGTH(data-area)]

 [RBA | RRN]

 [NOSUSPEND]

Service:

File Control

Setup:

file.<filename>=jdbc:< xml_file_descriptor.xml>[;<sql_connection_name>]

Elastic COBOL Programmer’s Guide 167

The xml_file_descriptor is an XML file described in the file setup, containing
information relating the database columns to the record positions. It must be
placed in the resources folder. Placing a $XFD FILE="filename.xml"
command before a record in the data division will generate a starting
template in the listing folder. The sql_connection_name is 'file' by default.

sql.<sql_connection_name>.datasource=<jndi_datasource_name>

The file service uses the SQL connection named 'file' by default, but it may
be overridden in the file setup. It must be setup in the same manner as all
SQL connections.

Options:

DATASET(data-value)

Specifies the filename the same as FILE, but FILE is preferred.

FILE(data-value)

Specifies the filename. This filename is referred to in the setup via
file.<filename>. For example, FILE('abc') would refer to setup entry
'file.abc=jdbc:abc.xml'.

FROM(data-area)

Specifies the data record to be written.

KEYLENGTH(data-value)

Specifies the length of the record ID key field.

LENGTH(data-area)

Specifies the length of the from field.

MASSINSERT

Specifies that this write is part of a mass insert of data, where each WRITE
contains MASSINSERT.

NOSUSPEND

The read does not suspend on locks.

RBA

Specifies that the key is by relative byte address.

RIDFLD(data-area)

Specifies the record ID field, the key used to search for the record. This
data item is mapped to the column marked with an ridfld attribute in the XML
file descriptor.

RRN

Specifies that the key is by relative record number.

SYSID(data-value)

Elastic COBOL Programmer’s Guide 168

Specifies the system ID for the file. This should be done instead by setting
the appropriate SQL file connection.

Conditions:

FILENOTFOUN
D

The file itself could not be found.

ILLOGIC A logical error occurred.

INVREQ Invalid request.

IOERR An input/output error occurred, such as an invalid
SQL query.

LENGERR The length of the record read exceeds the given
INTO buffer's LENGTH.

NOTAUTH Not authorized.

NOTOPEN The file is not open.

RECORDBUSY The record was locked.

WRITE JOURNALNAME

Create a journal record and write it to a journal destination.

Syntax:

WRITE JOURNALNAME(data-value)

JTYPEID(data-value)

FROM(data-area) [FLENGTH(data-value)]

REQID(data-area)

PREFIX(data-area) PFXLENG(data-value)

WAIT

NOSUSPEND

Service:

Journal

Setup:

journal.<name>=<journal_protocol_reference>

Options:

JOURNALNAME

JTYPEID

Elastic COBOL Programmer’s Guide 169

FROM

FLENGTH

REQID

PREFIX

PFXLENG

WAIT

NOSUSPEND

Conditions:

INVREQ The command is not valid for the environment.

IOERR An input/output error has occurred in writing the
journal record. This occurs when writing, flushing
or syncing a file.

JIDERR The named journal is not available. This condition
occurs when there is no journal setup for the
named journal, or the named journal's protocol is
invalid.

LENGERR The journal record size is too large.

NOJBUFSP The journal has no more space. This may also
occur if a wait is interrupted.

NOTAUTH Not authorized to write to this journal. This may
occur when opening a file where not allowed.

NOTOPEN The journal is not open or cannot be opened.

WRITE JOURNALNUM

This command has been deprecated in favor of WRITE JOURNAL.

Syntax:

JOURNAL

{JFILEID(data-value) | JOURNALNUM(data-value)}

JTYPEID(data-value)

FROM(data-area) LENGTH(data-value)

PREFIX(data-value) PFXLENG(data-value)

REQID(data-area)

WAIT

STARTIO

NOSUSPEND

Elastic COBOL Programmer’s Guide 170

Service:

Journal

Setup:

journal.DFHJnn=journal_protocol_reference

Options:

JFILEID or JOURNALNUM

Binary halfword indicating journal from 1 through 99. The corresponding
journal name is DFHJnn, where nn is the two-digit journal number.

JTYPEID

Two-character code.

FROM

Journal record data.

LENGTH

Length of journal record data.

PREFIX

User prefix data.

PFXLENG

User prefix length.

REQID

The transaction system returns a value in this field unique to the task and
journal record.

WAIT

Journal record is written synchronously.

STARTIO

Journal record should be written immediately.

NOSUSPEND

If insufficient journal space, return immediately.

Conditions:

IOERR

An input/output error has occurred in writing the journal
record. This occurs when writing, flushing or syncing a
file.

JIDERR The named journal is not available. This condition

Elastic COBOL Programmer’s Guide 171

occurs when there is no journal setup for the named
journal, or the named journal's protocol is invalid.

LENGERR The journal record size is too large.

NOJBUFSP The journal has no more space. This may also occur if
a wait is interrupted.

NOTAUTH Not authorized to write to this journal. This may occur
when opening a file where not allowed.

NOTOPEN The journal is not open or cannot be opened.

WRITE JOURNALNAME

Create a journal record and write it to a journal destination.

Syntax:

WRITE JOURNALNAME(data-value)

JTYPEID(data-value)

FROM(data-area) [FLENGTH(data-value)]

REQID(data-area)

PREFIX(data-area) PFXLENG(data-value)

WAIT

NOSUSPEND

Service:

Journal

Setup:

journal.name=journal_protocol_reference

Options:

JOURNALNAME

JTYPEID

FROM

FLENGTH

REQID

PREFIX

PFXLENG

WAIT

Elastic COBOL Programmer’s Guide 172

NOSUSPEND

Conditions:

INVREQ The command is not valid for the environment.

IOERR An input/output error has occurred in writing the journal
record. This occurs when writing, flushing or syncing a
file.

JIDERR The named journal is not available. This condition
occurs when there is no journal setup for the named
journal, or the named journal's protocol is invalid.

LENGERR The journal record size is too large.

NOJBUFSP The journal has no more space. This may also occur if
a wait is interrupted.

NOTAUTH Not authorized to write to this journal. This may occur
when opening a file where not allowed.

NOTOPEN The journal is not open or cannot be opened.

WRITE OPERATOR

Write a message to the system operator. The system operator is
represented by a journal.

Syntax:

WRITE OPERATOR

TEXT(data-value) [TEXTLENGTH(data-value)]

[ROUTECODES(data-value) NUMROUTES(data-value)]

[EVENTUAL | ACTION(cvda) | CRITICAL | IMMEDIATE | operator-reply]

where operator-reply is:

 REPLY(data-area) MAXLENGTH(data-value)

[REPLYLENGTH(data-area)]

[TIMEOUT(data-value)]

Elastic COBOL Programmer’s Guide 173

Service:

Operator

Setup:

operator.route=journal_name

The operator destination is a journal name, which in turn is specified through
journal.name=journal_protocol. The referent of the
journal_protocol_reference is operator.route, by default, which may be
modified to operator_route in some protocols. So, if operator.2 points to a
WebLogic journal, then the WebLogic logging catalog will be 'operator_2'.

Options:

ACTION(cvda)

The cvda must be one of the following values, or the name of the cvda may
be provided directly.

EVENTUAL

The EVENTUAL message is intended for low-priority operator messages.

The journal entry is written using JTYPEID('!E'), PREFIX("Operator,
Eventual Action Required"). If selected by default rather than explicitly, the
PREFIX("Operator") is used instead.

IMMEDIATE

The IMMEDIATE message is intended for medium-priority operator
messages.

The journal entry is written using JTYPEID('!I'), PREFIX("Operator,
Immediate Action Required").

CRITICAL

The CRITICAL message is intended for high-priority operator messages.

The journal entry is written using JTYPEID('!C'), PREFIX("Operator, Critical
Action Required").

MAXLENGTH(data-value)

Specifies the maximum length of the reply area.

NUMROUTES(data-value)

Specifies the length of the routing table.

REPLY(data-area)

This data-area is filled with the operator reply. Note that many operator
protocols do not support a REPLY and will issue an EXPIRED condition
under all circumstances.

Elastic COBOL Programmer’s Guide 174

The journal entry is written using JTYPEID('!R'), PREFIX("Operator, Reply
Required").

REPLYLENGTH(data-area)

Returns the actual length of the operator reply.

ROUTECODES(data-value)

Contains NUMROUTES bytes, each of which is a binary value 0..255. The
default route if unspecified is 2. For compatibility with other
implementations, restrict the route to a binary value 1..28.

TEXT(data-value)

Contains the text sent to the operator destination.

TEXTLENGTH(data-value)

Specifies the length of the TEXT sent to the operator destination.

Conditions:

The following conditions are allocated to WRITE OPERATOR, but individual
journal protocols may produce additional conditions. See the journal
protocol for more information on conditions produced.

EXPIRED RESP2

7 TIMEOUT has occurred

100 REPLY is not supported for the protocol.

INVREQ RESP2

1 TEXTLENGTH is invalid.

2 NUMROUTES is invalid.

3 ROUTECODES is invalid.

4 MAXLENGTH is invalid.

5 TIMEOUT is invalid.

6 ACTION is invalid.

LENGERR RESP2

8 Reply was truncated because it is longer than
MAXLENGTH.

WRITEQ TD

Write data to a transient data queue.

Elastic COBOL Programmer’s Guide 175

Syntax:

WRITEQ TD QUEUE(name)

 FROM(data-area)

 [LENGTH(data-value)]

 [SYSID(name)]

Service:

Transient Data Control

Setup:

queue[.sysid_value].name=uri

[sysid.name=sysid_value]

Options:

QUEUE(name)

Specifies the name of the transient data queue. The queue must be
defined.

FROM(data-area)

Specifies the data area contents to send to the queue.

LENGTH(data-value)

Specifies the length of the data area contents. The default is the length of
data-area.

SYSID(name)

Specifies the system ID. This is used to determine which queue definition is
used.

Conditions:

SYSIDERR An unknown sysid is being used.

QIDERR

1 There is no such queue definition.

2 The queue could not be obtained.

INVREQ The queue producer could not be created, for reasons
such as the queue being for input only.

IOERR The message send to the queue failed.

Elastic COBOL Programmer’s Guide 176

WRITEQ TS

Write data to a temporary storage data queue.

Syntax:

WRITEQ TS {QUEUE(name) | QNAME(name)}

 FROM(data-area)

 [LENGTH(data-value)]

 [SYSID(name)]

 [AUXILIARY | MAIN]

 [NOSUSPEND]

 [NUMITEMS(data-area) | {ITEM(data-area) [REWRITE]}]

Service:

 Temporary Storage Control

Setup:

queue[.sysid_value].name[.main | .auxiliary]=uri

[sysid.name=sysid_value]

Options:

QUEUE(name)

Specifies the name of the transient data queue. The queue must be
defined.

QNAME(name)

See QUEUE.

FROM(data-area)

Specifies the data area contents to send to the queue.

LENGTH(data-value)

Specifies the length of the data area contents. The default is the length of
data-area. The length must be between 1 and 32763.

SYSID(name)

Specifies the system ID. This is used to determine which queue definition is
used.

NUMITEMS(data-area)

Elastic COBOL Programmer’s Guide 177

Returns the number of items in the queue.

ITEM(data-area)

If REWRITE is not specified, returns the number of items in the queue. This
is for compatibility reasons, NUMITEMS is preferred for this case.

If REWRITE is specified, specifies the item number to rewrite.

REWRITE

Rewrite a particular item number, given by ITEM, within the queue.

NOSUSPEND

Raise NOSPACE rather than suspending if there is no remaining room in the
queue.

MAIN

Requests that the queue use main storage. It does so by selecting the
queue reference ending in .main, if available.

AUXILIARY

Requests that the queue use auxiliary (disk) storage. It does so by selecting
the queue reference ending in .auxiliary, if available.

Conditions

SYSIDERR An unknown sysid is being used.

QIDERR

1 There is no such queue definition.

2 The queue could not be obtained.

LENGERR The length is invalid, it must be between 1 and 32763.

NOSPACE Insufficient space is available to write, and
NOSUSPEND was not coded.

XCTL

Transfer program control. Link to another program, after ending the current
program.

Syntax:

XCTL PROGRAM(name)

 [COMMAREA(data-area) [LENGTH(data-area)]]

 [INPUTMSG(data-area) [INPUTMSGLEN(data-value)]]

Elastic COBOL Programmer’s Guide 178

Service:

Program Control

Setup:

pct.name=program_uri

program_name must be a valid program reference, either a classname or
URI.

xlt.name=program_name

program_name must be a valid name in the program table.

Options:

PROGRAM(name)

The program name to be loaded.

COMMAREA(data-area)

The COMMAREA to pass to the linked program.

LENGTH(data-area)

The length of the COMMAREA.

INPUTMSG(data-area)

Specifies data to be received by the other program's RECEIVE.

INPUTMSGLEN(data-value)

Specifies the length of the INPUTMSG.

Conditions:

LENGERR

11 COMMAREA length not between 0 and 32767.

27 INPUTMSGLEN not between 0 and 32767

PGMIDERR

1 The program name has no table entry.

3 The program could not be loaded.

Elastic COBOL Programmer’s Guide 179

Appendix DFHVALUE(name)

Access to special constants is provided in source code by coding
DFHVALUE(name), where name is one of the following.

DFHVALUE constants

Num Name

1 IGNORE

1 NOTAPPLIC

2 BDAM

3 VSAM

3 SFS

4 REMOTE

5 ESDS

6 KSDS

7 RRDS

8 KEYED

9 NOTKEYED

10 BASE

11 PATH

12 FIXED

13 VARIABLE

14 UNDEFINED

15 NOTSUPPORTED

16 BLOCKED

17 UNBLOCKED

18 OPEN

19 CLOSED

20 OPENING

21 CLOSING

22 CLOSEREQUEST

23 ENABLED

24 DISABLED

25 DISABLING

26 OLD

27 SHARE

28 NEW

29 RECOVERABLE

30 NOTRECOVABLE

30 NOTRECOVERABLE

31 EMPTYREQ

Elastic COBOL Programmer’s Guide 180

Num Name

32 NOEMPTYREQ

33 UNENABLED

34 UNENABLING

35 READABLE

36 NOTREADABLE

37 UPDATABLE

38 NOTUPDATABLE

39 BROWSABLE

40 NOTBROWSABLE

41 ADDABLE

42 NOTADDABLE

43 DELETABLE

44 NOTDELETABLE

45 HEX

46 DEC

47 BLK

48 EXCTL

49 NOEXCTL

52 ALTERABLE

53 NOTALTERABLE

54 LOG

55 NOLOG

56 CTRLABLE

57 NOTCTRLABLE

60 VTAM

61 BSAM

62 BTAM

62 BTAM-ES

63 BGAM

64 TCAM

65 TCAMSNA

66 CONSOLE

67 CREATE

68 NOCREATE

69 ACQUIRED

70 RELEASED

71 ACQUIRING

72 COLDACQ

73 INSERVICE

74 OUTSERVICE

75 ATI

76 NOATI

77 TTI

78 NOTTI

Elastic COBOL Programmer’s Guide 181

Num Name

79 PAGEABLE

80 AUTOPAGEABLE

81 ALLOCATED

82 CONFFREE

83 CONFRECEIVE

84 CONFSEND

85 FREE

86 PENDFREE

87 PENDRECEIVE

88 RECEIVE

89 ROLLBACK

90 SEND

91 SYNCFREE

92 SYNCRECEIVE

93 SYNCSEND

94 FREEING

95 AVAILABLE

96 OBTAINING

100 NOTTABLE

101 CICSTABLE

102 USERTABLE

103 REMTABLE

110 PRIMARY

111 TAKEOVER

121 IRC

122 INDIRECT

123 XM

124 APPC

125 LU61

126 PENDING

127 NOTPENDING

143 XOK

144 XNOTDONE

149 C

150 ASSEMBLER

151 COBOL

152 PLI

152 PL1

154 PROGRAM

155 MAP

155 MAPSET

156 PARTITIONSET

158 ANY

159 BELOW

Elastic COBOL Programmer’s Guide 182

Num Name

160 PURGEABLE

161 NOTPURGEABLE

162 OLDCOPY

163 HOLD

164 NOHOLD

165 LPA

166 NOTLPA

167 NEWCOPY

168 PHASEIN

169 ALLCONN

170 AUTOCONN

171 NONAUTOCONN

172 GOINGOUT

173 SHARED

174 PRIVATE

175 SPRSTRACE

175 SPRSPACE

176 STANTRACE

177 SPECTRACE

178 DYNAMIC

179 STATIC

180 STARTUP

181 ACTIVE

182 FIRSTQUIESCE

183 FINALQUIESCE

184 SYSDUMP

185 NOSYSDUMP

186 TRANDUMP

187 NOTRANDUMP

188 SWITCH

192 BACKOUT

194 EXTSECURITY

194 CICSSECURITY

194 SECURE

195 TRANSACTIONSECURITY

196 NOSECURITY

196 NOSECURE

197 ALTERNATE

198 DEFAULT

200 OFF

201 ON

202 RESSECNO

203 RESSECINT

204 RESSECYES

Elastic COBOL Programmer’s Guide 183

Num Name

204 RESSECEXT

205 CMDSECNO

207 CMDSECYES

207 CMDSECEXT

208 COMMIT

209 READBACK

210 EMPTY

211 NOTEMPTY

212 FULL

213 TERMINAL

214 NOTERMINAL

215 PHYSICAL

216 LOGICAL

221 EXTRA

222 INTRA

223 NOCTL

224 ASACTL

225 SWITCHING

226 INPUT

227 OUTPUT

228 DISPATCHABLE

229 RUNNING

231 SUSPENDED

233 TASK

234 TERM

235 DEST

236 PURGE

237 FORCEPURGE

241 MCHCTL

242 PRESETSEC

243 NOPRESETSEC

244 SIGNEDON

245 SIGNEDOFF

246 UOW

247 AUXILIARY

248 MAIN

250 TAPE1

251 TAPE2

252 DISK1

253 DISK2

254 DISK2PAUSE

255 SMF

256 OPENINPUT

257 OPENOUTPUT

Elastic COBOL Programmer’s Guide 184

Num Name

258 READY

259 NOTREADY

260 CURRENT

261 CLOSELEAVE

262 AUTOARCH

263 NOAUTOARCH

264 REVERTED

265 ADVANCE

266 COLDSTART

267 WARMSTART

268 EMERGENCY

269 LOGTERM

270 FINPUT

271 FOUTPUT

272 FOPEN

273 FCLOSE

274 OK

275 NOWRITE

275 READONLY

276 REMOVE

277 RECOVERED

285 NOSWITCH

286 SWITCHNEXT

287 SWITCHALL

288 SHUTDOWN

289 NOSHUTDOWN

290 RESET

291 ADD

292 DELETE

310 INTSTART

311 INTSTOP

312 AUXSTART

313 AUXPAUSE

314 AUXSTOP

317 GTFSTART

318 GTFSTOP

319 SYSTEMON

320 SYSTEMOFF

321 USERON

322 USEROFF

323 SINGLEON

324 SINGLEOFF

330 PERF

331 NOPERF

Elastic COBOL Programmer’s Guide 185

Num Name

332 EXCEPT

333 NOEXCEPT

334 EVENT

335 NOEVENT

340 WAIT

341 NOWAIT

342 FORCE

349 CLOSEFAILED

350 IMMCLOSE

351 FORCECLOSE

352 IMMCLOSING

353 FORCECLOSING

354 FWDRECOVABLE

355 UNDETERMINED

356 NORMALBKOUT

357 FAILEDBKOUT

358 FAILINGBKOUT

359 INVALID

360 VALID

361 NOTFWDRCVBLE

362 EXITTRACE

363 NOEXITTRACE

364 ZCPTRACE

365 NOZCPTRACE

366 TCEXITALL

367 TCEXITSYSTEM

368 TCEXITNONE

369 TCEXITALLOFF

370 CEDF

370 MODEL

371 NOCEDF

371 SURROGATE

372 SESSION

373 APPCSINGLE

374 APPCPARALLEL

375 COBOLII

376 NOTINIT

377 LE370

378 INACTIVE

379 CICSDATAKEY

380 USERDATAKEY

381 CICSEXECKEY

382 USEREXECKEY

383 DPLSUBSET

Elastic COBOL Programmer’s Guide 186

Num Name

384 FULLAPI

385 FMHPARM

386 NOFMHPARM

387 OBOPERID

388 NOOBOPERID

391 APLKYBD

392 NOAPLKYBD

393 APLTEXT

394 NOAPLTEXT

395 AUDALARM

396 NOAUDALARM

397 BACKTRANS

398 NOBACKTRANS

399 COLOR

400 NOCOLOR

401 COPY

402 NOCOPY

403 DUALCASE

404 NODUALCASE

405 EXTENDEDDS

406 NOEXTENDEDDS

407 FORMFEED

408 NOFORMFEED

409 HFORM

410 NOHFORM

411 VFORM

412 NOVFORM

413 HILIGHT

414 NOHILIGHT

415 KATAKANA

416 NOKATAKANA

417 LIGHTPEN

418 NOLIGHTPEN

419 MSRCONTROL

420 NOMSRCONTROL

421 OBFORMAT

422 NOOBFORMAT

423 OUTLINE

424 NOOUTLINE

425 PARTITIONS

426 NOPARTITIONS

427 PRINTADAPT

428 NOPRINTADAPT

429 PROGSYMBOL

Elastic COBOL Programmer’s Guide 187

Num Name

430 NOPROGSYMBOL

431 ALLQUERY

432 NOQUERY

433 COLDQUERY

434 SOSI

435 NOSOSI

436 TEXTKYBD

437 NOTEXTKYBD

438 TEXTPRINT

439 NOTEXTPRINT

440 VALIDATION

441 NOVALIDATION

442 RELREQ

443 NORELREQ

444 DISCREQ

445 NODISCREQ

446 ALTPRTCOPY

447 NOALTPRTCOPY

448 PRTCOPY

449 NOPRTCOPY

450 UCTRAN

451 NOUCTRAN

452 TRANIDONLY

485 NEWSESSION

486 OLDSESSION

487 NOSTSN

488 STSNSET

489 STSNTEST

490 EB

491 CD

492 MORE

493 LIC

494 RU

495 NOTCDEB

496 NONE

497 DEFRESP1

498 DEFRESP2

499 DEFRESP3

500 NOALARM

501 ALARM

502 FMH

503 NOFMH

504 PROTECTED

505 UNPROTECTED

Elastic COBOL Programmer’s Guide 188

Num Name

506 MDT

507 NOMDT

508 DATA

509 STSN

510 BEGINSESSION

511 TIMEOUT

512 INSTALLFAIL

513 DISCARDFAIL

514 SETFAIL

515 ACQFAIL

516 SESSIONLOST

517 SESSIONFAIL

518 CONVIDLE

519 ADDFAIL

520 DELETEFAIL

521 UNSOLDATA

522 NORMALRESP

523 EXCEPTRESP

524 ATTENTION

525 LUSTAT

526 CANCEL

527 RTR

528 DEFRESP1OR2

529 POSITIVE

530 NEGATIVE

531 NOMSGJRNL

532 INOUT

533 T3278M2

534 T3278M3

535 T3278M4

536 T3278M5

537 T3279M2

538 T3279M3

539 T3279M4

540 T3279M5

541 LUP

542 FORMATTED

543 DATASTREAM

544 LOSE

545 WIN

546 NOTINBOUND

547 INBOUND

549 RELEASING

550 INSTALLED

Elastic COBOL Programmer’s Guide 189

Num Name

551 NOTINSTALLED

552 TPS55M2

553 TPS55M3

554 TPS55M4

555 TPS55M5

556 NOCONV

557 PENDSTSN

558 PENDBEGIN

559 APPLICATION

560 PENDDATA

561 PENDSTART

562 PENDRELEASE

563 RELEASE

564 PENDUNSOL

565 PENDPASS

600 CONVERSE

601 NOCONVERSE

602 SYNCPOINT

603 NOSYNCPOINT

604 GMT

605 LOCAL

606 FORMATEDF

607 NOFORMATEDF

608 NOTASKSTART

609 STARTED

610 STOPPED

611 TASKSTART

612 BUSY

613 NOTBUSY

614 SCS

615 DS3270

616 ASCII7

617 ASCII8

618 AUTOSTART

620 INDOUBT

621 INFLIGHT

622 WAITFORGET

623 CONTROLSHUT

623 DB2

623 SQL

624 CANCELLED

625 FIRSTINIT

626 SECONDINIT

627 THIRDINIT

Elastic COBOL Programmer’s Guide 190

Num Name

628 INITCOMPLETE

629 STANDBY

630 AUTOACTIVE

631 AUTOINACTIVE

632 CTLGALL

633 CTLGMODIFY

634 CTLGNONE

635 START

636 POST

637 DELAY

638 ROUTE

640 CLEAR

641 NOCLEAR

642 USER

643 SYSTEM

644 SHUTENABLED

645 SHUTDISABLED

650 EXCI

651 GENERIC

652 SPECIFIC

653 SYSCONNECT

654 NOSYSCONNECT

655 FORCECANCEL

657 NOISOLATE

658 ISOLATE

659 NOTDEFINED

660 CICS

661 NONCICS

663 SUBSPACE

664 BASESPACE

665 XCF

666 REQUIRED

667 NOTREQUIRED

668 SOS

669 NOTSOS

670 REGISTERED

671 UNREGISTERED

672 UNAVAILABLE

673 CMDPROT

674 NOCMDPROT

675 RELATED

677 REGERROR

678 DEREGISTERED

679 DEREGERROR

Elastic COBOL Programmer’s Guide 191

Num Name

680 REENTPROT

681 NOREENTPROT

682 SOSBELOW

683 SOSABOVE

684 DAE

685 NODAE

690 CONNECTED

691 NOTCONNECTED

693 SPI

694 NOSPI

700 NORECOVDATA

701 RECOVDATA

702 RESYNC

703 UNCONNECTED

706 IMMQUIESCED

707 QUIESCED

708 QUIESCING

709 UNQUIESCED

710 NOLOSTLOCKS

711 NORETAINED

712 RECOVERLOCKS

713 REMLOSTLOCKS

714 RESETLOCKS

715 RETAINED

716 RETRY

720 RLS

721 NOTRLS

722 UNCOMMITTED

723 CONSISTENT

724 REPEATABLE

730 RLSACTIVE

731 RLSINACTIVE

732 VRRDS

740 REMSESSION

751 EXECENQ

752 EXECENQADDR

753 OWNER

754 WAITER

755 CONNECTION

756 DATASET

757 HEURCOMMIT

758 HEURBACKOUT

761 RLSSERVER

762 SHUNTED

Elastic COBOL Programmer’s Guide 192

Num Name

763 WAITCOMMIT

765 WAITING

766 WAITRMI

767 TDQ

768 TSQ

770 COORDINATOR

771 RMI

772 STARTING

773 SUBORDINATE

774 NRS

780 MVS

781 DUMMY

782 FAILED

783 FLUSH

784 NOSYSLOG

785 SYSLOG

788 COLD

789 INITIAL

790 ENDAFFINITY

791 CACHE

792 COMMITFAIL

793 DATASETFULL

794 DEADLOCK

795 DELEXITERROR

796 INDEXRECFULL

797 IOERROR

798 OPENERROR

799 RLSGONE

800 BACKUPNONBWO

810 SKIP

811 REWIND

811 LEAVE

812 REREAD

813 MOD

814 QUEUE

815 REJECT

816 IGNORERR

820 UNATTEMPTED

830 RRCOMMITFAIL

831 RRINDOUBT

832 LCKSTRUCFULL

833 CFTABLE

834 LOAD

835 NOLOAD

Elastic COBOL Programmer’s Guide 193

Num Name

836 CONTENTION

837 LOCKING

900 ABEND

902 CGROUP

903 CONNECT

904 CONNECTING

905 CSIGN

906 CTERM

907 CTX

908 COPID

909 CUSERID

910 DISCONNING

911 EQUAL

912 EXIT

913 GROUP

914 HIGH

915 LOW

916 NOCONNECT

917 NOEXIT

918 NORELEASE

919 NOROLLBACK

920 NOTWAIT

921 N906D

922 POOL

923 REBUILD

924 RECONNECT

925 SIGN

926 SQLCODE

927 TWAIT

928 TXID

929 TX

930 USERID

931 N906

932 TPOOL

933 OPID

1000 NOTFIRED

1001 FIRED

1002 ACTIVITY

1003 COMPOSITE

1004 TIMER

1005 AND

1006 OR

1010 PROCESS

1011 NOUSER

Elastic COBOL Programmer’s Guide 194

Num Name

1012 EVENTFAIL

1013 FORCED

1014 INCOMPLETE

1015 UNEXPECTED

1016 NORMAL

1017 EXPIRED

1018 UNEXPIRED

1021 NOTDYNAMIC

1022 NOTROUTABLE

1023 ROUTABLE

1024 DORMANT

1025 CANCELLING

1026 COMPLETE

1027 NOTSUSPENDED

1030 SSL

1031 NOSSL

1032 CLIENTAUTH

1033 HTTPYES

1034 HTTPNO

1036 APPEND

1037 NOAPPEND

1038 BINARY

1039 EBCDIC

1050 QUASIRENT

1051 THREADSAFE

1052 BASEAPI

1053 OPENAPI

1054 NOFORCE

1055 CKOPEN

1056 UKOPEN

1057 QR

1058 INTERNAL

1071 NOAUTO

1072 PROGAUTO

1073 FULLAUTO

1080 JVM

1081 NOJVM

1082 DEBUG

1083 NODEBUG

1084 NONLE370

2000 HTTP

2001 NONHTTP

Elastic COBOL Programmer’s Guide 195

DFHVALUE(name) Device Commands

Num Name

1 T7770

2 SYSTEM7

8 TCONSOLE

18 SEQDISK

20 MAGTAPE

24 CDRDLPRT

32 HARDCOPY

33 TWX3335

34 TELETYPE

36 T1050

40 T2740

42 T2741COR

43 T2741BCD

64 VIDEOTERM

65 T2260L

72 T2260R

74 T1053

76 T2265

80 TTCAM

128 BISYNCH

130 T2770

132 T2780

133 T3780

134 T2980

136 T3735

137 T3740

138 T3600BI

145 T3277R

146 T3275R

147 T3284R

148 T3286R

153 T3277L

155 T3284L

156 T3286L

160 BIPROG

161 SYSTEM3

164 SYS370

166 SYS7BSCA

176 SDLC

177 T3601

Elastic COBOL Programmer’s Guide 196

Num Name

178 T3614

180 T3790

181 T3790UP

182 T3790SCSP

184 T3650PIPE

185 T3653HOST

186 T3650ATT

187 T3650USER

189 CONTNLU

190 INTACTLU

191 BATCHLU

192 LUTYPE6

193 LUTYPE4

208 RESSYS

209 ISCMMCONV

210 LUCMODGRP

211 LUCSESS

Elastic COBOL Programmer’s Guide 197

Appendix DFHRESP

RESP codes are available symbolically using DFHRESP(name), such as
DFHRESP(NORMAL).

Num Name

0 NORMAL

1 ERROR

2 RDATT

3 WRBRK

4 EOF

5 EODS

6 EOC

7 INBFMH

8 ENDINPT

9 NONVAL

10 NOSTART

11 TERMIDERR

12 FILENOTFOUND

13 NOTFND

14 DUPREC

15 DUPKEY

16 INVREQ

17 IOERR

18 NOSPACE

19 NOTOPEN

20 ENDFILE

21 ILLOGIC

22 LENGERR

23 QZERO

24 SIGNAL

25 QBUSY

26 ITEMERR

27 PGMIDERR

28 TRANSIDERR

29 ENDDATA

30 INVTSREQ

31 EXPIRED

32 RETPAGE

33 RTEFAIL

34 RTESOME

35 TSIOERR

Elastic COBOL Programmer’s Guide 198

Num Name

36 MAPFAIL

37 INVERRTERM

38 INVMPSZ

39 IGREQID

40 OVERFLOW

41 INVLDC

42 NOSTG

43 JIDERR

44 QIDERR

45 NOJBUFSP

46 DSSTAT

47 SELNERR

48 FUNCERR

49 UNEXPIN

50 NOPASSBKRD

51 NOPASSBKWR

52 SEGIDERR

53 SYSIDERR

54 ISCINVREQ

55 ENQBUSY

56 ENVDEFERR

57 IGREQCD

58 SESSIONERR

59 SYSBUSY

60 SESSBUSY

61 NOTALLOC

62 CBIDERR

63 INVEXITREQ

64 INVPARTNSET

65 INVPARTN

66 PARTNFAIL

69 USERIDERR

70 NOTAUTH

71 VOLIDERR

72 SUPPRESSED

80 NOSPOOL

81 TERMERR

82 ROLLEDBACK

83 END

84 DISABLED

85 ALLOCERR

86 STRELERR

87 OPENERR

88 SPOLBUSY

Elastic COBOL Programmer’s Guide 199

Num Name

89 SPOLERR

90 NODEIDERR

91 TASKIDERR

92 TCIDERR

93 DSNNOTFOUND

94 LOADING

95 MODELIDERR

96 OUTDESCRERR

97 PARTNERIDERR

98 PROFILEIDERR

99 NETNAMERR

100 LOCKED

101 RECORDBUSY

102 UOWNNOTFOUND

102 UOWNOTFOUND

103 UOWLNOTFOUND

104 LINKABEND

105 CHANGED

106 PROCESSBUSY

107 ACTIVITYBUSY

108 PROCESSERR

109 ACTIVITYERR

110 CONTAINERERR

111 EVENTERR

112 TOKENERR

113 NOTFINISHED

114 POOLERR

115 TIMERERR

116 SYMBOLERR

117 TEMPLATERR

Elastic COBOL Programmer’s Guide 200

Appendix EJB Setup Files

To setup remote EJB usage of the transaction, several .xml files may be
required, including ejb-jar.xml and possibly one or more required for a
particular application server. Samples of these are included.

These files are automatically generated by the IDE during deployment.

ejb-jar.xml

<ejb-jar>
 <enterprise-beans>

<session>
<ejb-name>LinkDispatcher</ejb-name>
<home>com.heirloomcomputing.etp.transaction.env.ejb.LinkDispatcherHome</home>
<remote>com.heirloomcomputing.etp.transaction.env.ejb.LinkDispatcher</remote>
<local-home>

com.heirloomcomputing.etp.transaction.env.ejb.LinkDispatcherLocalHome
</local-home>
<local>com.heirloomcomputing.etp.transaction.env.ejb.LinkDispatcherLocal</local>
<ejb-class>com.heirloomcomputing.etp.transaction.env.ejb.LinkDispatcherEJB</ejb-class>

<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>

<env-entry>

<env-entry-name>xlt.ejb_transid</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>bound_program_name</env-entry-value>

</env-entry>
<env-entry>

<env-entry-name>pct.bound_program_name</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>program_id</env-entry-value>

</env-entry>
 </session>
</enterprise-beans>
</ejb-jar>

weblogic-ejb-jar.xml

<?xml version="1.0"?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
"-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN"
"http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd">

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>

 <ejb-name>LinkDispatcher</ejb-name>
 <jndi-name>remote_jndi_name</jndi-name>

 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

Elastic COBOL Programmer’s Guide 201

Appendix Unsupported Commands

The Elastic Transaction Platform supports the CICS API command set with the following
exceptions:

Distributed Processing Service:

RECEIVE
SEND
CONVERSE
ISSUE EODS
ISSUE COPY
WAIT TERMINAL
ISSUE LOAD
WAIT SIGNAL
ISSUE RESET
ISSUE DISCONNECT
ISSUE ENDOUTPUT

ISSUE ERASEAUP
ISSUE ENDFILE
ISSUE PRINT
ISSUE SIGNAL
ALLOCATE
FREE
POINT
BUILD ATTACH
EXTRACT ATTACH
EXTRACT TCT
WAIT CONVID

EXTRACT PROCESS
ISSUE ABEND
CONNECT PROCESS
ISSUE
CONFIRMATION
ISSUE ERROR
ISSUE PREPARE
ISSUE PASS
EXTRACT LOGONMSG
EXTRACT
ATTRIBUTES

Interval Control:

START BREXIT

Batch Data Interchange:

ISSUE ADD
ISSUE ERASE
ISSUE REPLACE
ISSUE ABORT

ISSUE QUERY
ISSUE END
ISSUE RECEIVE
ISSUE NOTE

ISSUE WAIT
ISSUE SEND

TCP/IP:

EXTRACT CERTIFICATE

Trace Control:

MONITOR

Elastic COBOL Programmer’s Guide 2

Task Management Service:

WAITCICS WAIT EXTERNAL

