
Message Queue Interface Module

The Heirloom Computing Message Queue Interface Module converts WebSphere MQ
Message Queue Interface (MQI) calls to either Java Message Service (JMS) calls or WebSphere
MQ based java calls. COBOL programs written to use the WebSphere MQ API can now access
virtually any Messaging Platform without having to be rewritten.

WebSphere MQ – The main benefit of using the WebSphere MQ based java configuration
rather than the JMS configuration is that an almost one-to-one mapping to the WebSphere MQ
Messaging Platform is maintained and thus more functions are fully supported.

JMS – advantages of using the JMS configuration over the base java configuration include the
ability to choose a Messaging Platform, and having greater flexibility and compatibility when running in
an environment supporting JMS (i.e. JEE).
Notes: WebSphere MQ and WebSphere are trademarks of IBM, Corp. Java is a trademark of Oracle, Corp.

Configuring Elastic Cobol Message Queue Environment

Basic configuration is performed through a properties file heirloomcomputing_mqi.properties
containing configuration information. The Elastic Cobol system searches for this properties file in the
classpath at runtime.

Some of these properties can be qualified with a queue manager name and/or queue name.
Qualified properties are searched before non-qualified (or lesser qualified) properties. For instance, if
the module is searching for a queue named Q1, it will look for a value associated with the
com.heirloomcomputing.ecs.mqi.jms.Destination.Q1 property first and if that is not found it will look for a value
associated with the com.heirloomcomputing.ecs.mqi.jms.Destination property.

Following properties can be used to configure the environment:

Common Properties

1. Connection Manager Implementation to use.
com.heirloomcomputing.ecs.mqi.api.MQIConnectionManager=<classname of ConnectionManager implementation>

● WebSphere java classes (default if property is not specified):
com.heirloomcomputing.ecs.mqi.api.MQIConnectionManager=com.heirloomcomputing.ecs.mqi.wsmqbase.WSMQConnectionM
anager

● JMS implementation:
com.heirloomcomputing.ecs.mqi.api.MQIConnectionManager=com.heirloomcomputing.ecs.mqi.jms.JMSConnectionManager

2. Trace setting: com.heirloomcomputing.ecs.mqi.wsmqbase.trace_level=<trace level (1-5)>

JMS Only Properties

1. JMS module to use:
com.heirloomcomputing.ecs.mqi.jms.JMSModule[.<queueManagerName>]=<classname of JMSModule implementation>

● JMS implementation (default if property is not specified):
com.heirloomcomputing.ecs.mqi.jms.JMSModule=com.heirloomcomputing.ecs.mqi.jms.module.StandardJMSModule

● WebSphere MQ JMS specific implementation:
com.heirloomcomputing.ecs.mqi.jms.JMSModule=com.heirloomcomputing.ecs.mqi.jms.module.WebSphereMQJMSModule

2. Trace setting:
com.heirloomcomputing.ecs.mqi.jms.JMSModule.trace[.<queueManagerName>]=<true | false>

● Example: com.heirloomcomputing.ecs.mqi.jms.JMSModule.trace=true

3. JNDI InitialContext properties:
● java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory

● java.naming.provider.url=file:/c:/JNDI-Directory

4. Connection Factory to use:

com.heirloomcomputing.ecs.mqi.jms.ConnectionFactory[.<queueManagerName>]=<jms connection factory to use>

● Example: com.heirloomcomputing.ecs.mqi.jms.ConnectionFactory.QCF1=jms\\Samples\\QCF1

5. The destination to use:

com.heirloomcomputing.ecs.mqi.jms.Destination[.<queueManagerName>.<queueName> | .<queueName>]=<jms destination>

● Example: com.heirloomcomputing.ecs.mqi.jms.Destination.Q1=jms\\Samples\\Q1

COBOL Routines Usage

Pointers in MQI group items are not supported. Offsets should be used instead, and must be
set to specific values. Also, the group item passed must have a specific structure, depending on the
function:

• MQCONNX:

If not using channel data, simply pass the MQCNO group item. If using channel data, pass a
group containing two groups: The MQCNO group followed by the MQCD group. Also set the
MQCNO-CLIENTCONNOFFSET to either 144 or 148 (offset from start of CNO structure).

• MQOPEN:

If not a distribution list, simply pass the MQOD group item. If a distribution list, pass a group
containing three items: MQOD group followed by the MQOR group table followed by the
MQRR group table. Also set the MQOD-OBJECTRECOFFSET to 328 or 336 (offset from
start of OD structure). Also set MQOD-RESPONSERECOFFSET to MQOD-
OBJECTRECOFFSET + (96* MQOD-RECSPRESENT).

• MQPUT:

If not a distribution list, simply pass the MQPMO group item. If a distribution list, pass a

group containing three items: The MQPMO group followed by the MQPMR group table
followed by the MQRR group table. Also set the MQPMO-PUTMSGRECOFFSET to 144 or
152 (offset from start of PMO structure). Also set MQPMO-RESPONSERECOFFSET to:
MQPMO-PUTMSGRECOFFSET + (108* MQPMO-RECSPRESENT).

• MQPUT1:

(See the notes for MQOPEN and MQPUT.)

JMS Currently Unsupported Functionality

1. MQINQ and MQSET

2. Message Segments

3. NAMELIST, PROCESS, Q_MGR, and CHANNEL object types

4. Distribution lists

5. MQOO_INPUT_EXCLUSIVE

6. LOCK and UNLOCK

7. Message Tokens and Accounting Tokens

8. Signals

9. SYNCPOINT_IF_PERSISTENT

10. MARK_SKIP_BACKOUT

11. MATCH_OFFSET and MATCH_MSG_TOKEN

12. Browsing JMS Topic objects

13. JMS Message objects other than TextMessage and BytesMessage

	Message Queue Interface Module

