
Message Queue Interface Module

The Heirloom Computing Message Queue Interface Module converts WebSphere MQ 
Message Queue Interface (MQI) calls to either Java Message Service (JMS) calls or WebSphere 
MQ based java calls. COBOL programs written to use the WebSphere MQ API can now access  
virtually any Messaging Platform without having to be rewritten.

WebSphere MQ –  The main benefit of using the WebSphere MQ based java configuration 
rather than the JMS configuration is that an almost one-to-one mapping to the WebSphere MQ 
Messaging Platform is maintained and thus more functions are fully supported.

JMS – advantages of using the JMS configuration over the base java configuration include the
ability to choose a Messaging Platform, and having greater flexibility and compatibility when running in
an environment supporting JMS (i.e. JEE).
Notes: WebSphere MQ and WebSphere are trademarks of IBM, Corp. Java is a trademark of Oracle, Corp.

Configuring Elastic Cobol Message Queue Environment

Basic configuration is performed through a properties file heirloomcomputing_mqi.properties
containing configuration information. The Elastic Cobol system searches for this properties file in the
classpath at runtime.

Some of these properties can be qualified with a queue manager name and/or queue name.
Qualified properties are searched before non-qualified (or lesser qualified) properties. For instance, if
the module is searching for a queue named Q1, it will look for a value associated with the
com.heirloomcomputing.ecs.mqi.jms.Destination.Q1 property first and if that is not found it will look for a value
associated with the com.heirloomcomputing.ecs.mqi.jms.Destination property.

Following properties can be used to configure the environment:

Common Properties

1. Connection Manager Implementation to use.
com.heirloomcomputing.ecs.mqi.api.MQIConnectionManager=<classname of ConnectionManager implementation>

● WebSphere java classes (default if property is not specified):
com.heirloomcomputing.ecs.mqi.api.MQIConnectionManager=com.heirloomcomputing.ecs.mqi.wsmqbase.WSMQConnectionM
anager

● JMS implementation:
com.heirloomcomputing.ecs.mqi.api.MQIConnectionManager=com.heirloomcomputing.ecs.mqi.jms.JMSConnectionManager

2. Trace setting: com.heirloomcomputing.ecs.mqi.wsmqbase.trace_level=<trace level (1-5)>

JMS Only Properties

1. JMS module to use:
com.heirloomcomputing.ecs.mqi.jms.JMSModule[.<queueManagerName>]=<classname of JMSModule implementation>

● JMS implementation (default if property is not specified):
com.heirloomcomputing.ecs.mqi.jms.JMSModule=com.heirloomcomputing.ecs.mqi.jms.module.StandardJMSModule

● WebSphere MQ JMS specific implementation:
com.heirloomcomputing.ecs.mqi.jms.JMSModule=com.heirloomcomputing.ecs.mqi.jms.module.WebSphereMQJMSModule

2. Trace setting:
com.heirloomcomputing.ecs.mqi.jms.JMSModule.trace[.<queueManagerName>]=<true | false>

● Example: com.heirloomcomputing.ecs.mqi.jms.JMSModule.trace=true

3. JNDI InitialContext properties:
● java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory

● java.naming.provider.url=file:/c:/JNDI-Directory

4. Connection Factory to use:

com.heirloomcomputing.ecs.mqi.jms.ConnectionFactory[.<queueManagerName>]=<jms connection factory to use>

● Example: com.heirloomcomputing.ecs.mqi.jms.ConnectionFactory.QCF1=jms\\Samples\\QCF1

5. The destination to use:

com.heirloomcomputing.ecs.mqi.jms.Destination[.<queueManagerName>.<queueName> | .<queueName>]=<jms destination>

● Example: com.heirloomcomputing.ecs.mqi.jms.Destination.Q1=jms\\Samples\\Q1

COBOL Routines Usage

Pointers in MQI group items are not supported. Offsets should be used instead, and must be
set to specific values. Also, the group item passed must have a specific structure, depending on the
function:

• MQCONNX:

If not using channel data, simply pass the MQCNO group item. If using channel data, pass a
group containing two groups: The MQCNO group followed by the MQCD group. Also set the
MQCNO-CLIENTCONNOFFSET to either 144 or 148 (offset from start of CNO structure).

• MQOPEN:

If not a distribution list, simply pass the MQOD group item. If a distribution list, pass a group
containing three items: MQOD group followed by the MQOR group table followed by the
MQRR group table. Also set the MQOD-OBJECTRECOFFSET to 328 or 336 (offset from
start of OD structure). Also set MQOD-RESPONSERECOFFSET to MQOD-
OBJECTRECOFFSET + (96* MQOD-RECSPRESENT).

• MQPUT:

If not a distribution list, simply pass the MQPMO group item. If a distribution list, pass a

group containing three items: The MQPMO group followed by the MQPMR group table
followed by the MQRR group table. Also set the MQPMO-PUTMSGRECOFFSET to 144 or
152 (offset from start of PMO structure). Also set MQPMO-RESPONSERECOFFSET to:
MQPMO-PUTMSGRECOFFSET + (108* MQPMO-RECSPRESENT).

• MQPUT1:

(See the notes for MQOPEN and MQPUT.)

JMS Currently Unsupported Functionality

1. MQINQ and MQSET

2. Message Segments

3. NAMELIST, PROCESS, Q_MGR, and CHANNEL object types

4. Distribution lists

5. MQOO_INPUT_EXCLUSIVE

6. LOCK and UNLOCK

7. Message Tokens and Accounting Tokens

8. Signals

9. SYNCPOINT_IF_PERSISTENT

10. MARK_SKIP_BACKOUT

11. MATCH_OFFSET and MATCH_MSG_TOKEN

12. Browsing JMS Topic objects

13. JMS Message objects other than TextMessage and BytesMessage

	Message Queue Interface Module

