
© 2014 Heirloom Computing Inc 
All Rights Reserved 

Elastic COBOL Programmer’s Guide 

 

 
 
 
 

REVISION: SEPTEMBER 2014 

 

 

 

The contents of this manual may be revised without prior notice. No part of this 
document may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, for any purpose, without the expressed written permission of Heirloom 
Computing Inc. 

 

Heirloom Computing has made every effort to ensure that this manual is correct and 
accurate, but reserves the right to make changes without notice at its sole discretion at 
any time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Elastic COBOL Programmer’s Guide ii 

Preface 

This Programmer’s Guide provides guidelines for the usage of Elastic 
COBOL programming constructs.  Programming with Elastic COBOL adds 
features that extend standard COBOL-85 and offers functional capabilities 
which are not defined as part of the standard. 

Elastic COBOL extensions should be easy to comprehend to the 
experienced COBOL programmer and a basic knowledge of COBOL-85 is 
assumed. 

 

Trademarks 

 IBM is a registered trademark of International Business Machines Inc. 

 Oracle and Java are registered trademarks of Oracle and/or its affiliates. 

 UNIX is a registered trademark licensed exclusively to X/Open Company 
Limited. 

 Linux is a registered trademark of Linus Torvalds. 

 Windows is a registered trademark of Microsoft Corporation. 

 Eclipse is a trademark of the Eclipse Foundation Inc. 

 Other names may be trademarks of their respective owners. 

 

Product Usage 

Development 

Elastic COBOL application development is performed with the use of the 
Elastic COBOL compiler and runtime libraries. Elastic COBOL includes an 
Eclipse based Integrated Development Environment (IDE).  

Development is permitted on development platforms where a valid 
development license has been purchased. 

Deployment 

Application deployment is permitted to platforms where a valid deployment 
license has been purchased.



 

Elastic COBOL Programmer’s Guide iii 

Contents 

PREFACE ................................................................................................................................................... II 

TRADEMARKS .......................................................................................................................................... II 

PRODUCT USAGE ..................................................................................................................................... II 

CONTENTS ............................................................................................................................................... III 

CHAPTER 1 – COBOL FUNDAMENTALS ..................................................................................................... 1 

REFERENCE FORMATS ...................................................................................................................................... 1 
COPY FILES .................................................................................................................................................... 2 
LITERALS ....................................................................................................................................................... 3 

CHAPTER 2 – PROGRAM LIFECYCLE .......................................................................................................... 4 

OVERVIEW ..................................................................................................................................................... 4 
COBOL ........................................................................................................................................................ 4 
COBOL TO COBOL ........................................................................................................................................ 6 
COBOL TO COBOL REMOTE ............................................................................................................................ 9 
COBOL TO JAVA .......................................................................................................................................... 11 
COBOL TO JAVA REMOTE .............................................................................................................................. 19 
JAVA TO COBOL .......................................................................................................................................... 20 
JAVA TO COBOL REMOTE .............................................................................................................................. 21 
COBOL TO NATIVE ....................................................................................................................................... 21 
NATIVE TO COBOL ....................................................................................................................................... 24 

CHAPTER 3 – USER INTERFACE ............................................................................................................... 26 

TEXT ........................................................................................................................................................... 26 
GRAPHICS .................................................................................................................................................... 27 
LOCALIZATION .............................................................................................................................................. 32 

CHAPTER 4 – PRINTING .......................................................................................................................... 37 

PRINTING .................................................................................................................................................... 37 
FORMS ........................................................................................................................................................ 39 
BARCODE .................................................................................................................................................... 41 
ADVANCED .................................................................................................................................................. 42 

CHAPTER 5 – DATA ACCESS .................................................................................................................... 51 

DATATYPE STORAGE ...................................................................................................................................... 51 
FILE STORAGE ............................................................................................................................................... 55 
TRANSACTION .............................................................................................................................................. 65 
REMOTE FILE ACCESS ..................................................................................................................................... 65 
SQL ........................................................................................................................................................... 67 

CHAPTER 6 – COMMUNICATION ............................................................................................................ 70 

MQSERIES .................................................................................................................................................. 70 
CICS CLIENT ................................................................................................................................................ 75 
IMS CLIENT ................................................................................................................................................. 93 

CHAPTER 7 – CLIENT/SERVER EXECUTION .............................................................................................. 98 



 

Elastic COBOL Programmer’s Guide iv 

OVERVIEW ................................................................................................................................................... 98 
APPLET ....................................................................................................................................................... 98 
SERVLET .................................................................................................................................................... 100 
CGI .......................................................................................................................................................... 105 
RMI ......................................................................................................................................................... 106 
ENTERPRISE JAVABEANS ............................................................................................................................... 106 
INSTALL JBOSS ............................................................................................................................................ 108 
CREATING THE ENTERPRISE JAVABEAN COMPONENT ......................................................................................... 108 
CODING THE CLASSES AND INTERFACES ........................................................................................................... 110 
PACKAGING AND DEPLOYING THE EJB COMPONENT .......................................................................................... 115 

APPENDIX A – ASCII TABLE ................................................................................................................... 120 

APPENDIX B – EBCDIC TABLE ................................................................................................................ 121 

APPENDIX C – SQL ................................................................................................................................ 123 

APPENDIX D – COMPILER OPTIONS ...................................................................................................... 126 

APPENDIX E – RUNTIME OPTIONS ........................................................................................................ 131 



 

Elastic COBOL Programmer’s Guide 1 

Chapter 1 – COBOL Fundamentals 

Elastic COBOL operates similar to many other COBOL compilers, but 
possesses certain proprietary execution requirements that may not be found 
with other traditional COBOL offerings.  This section addresses these 
programming requirements. 

Reference Formats 

Elastic COBOL supports the standard fixed reference format that has 
expressed COBOL source code from the 1960's.  Support also exists in 
Elastic COBOL for additional formats introduced over time by various 
COBOL vendors and includes the COBOL 2002 standard format extensions.   

Fixed Format 

[1 2 3 4 5 6] [7] [8 9 10 11] [12 ... 72] [73 ...] 

 Sequence      I   Area A      Area B      Right Margin 

Fixed is the traditional format, with sequence numbers in the leftmost six 
columns, an indicator column, areas A and B, and a right margin.  Fixed 
format is assumed for most operations by default; however, the Elastic 
COBOL compiler will attempt auto-detection of other formats.  The IDE may 
auto generate SOURCEFORMAT statements into the top of new source 
code fragments to force the compiler to handle the file in the desired 
manner. 

Variable Format 

[1 2 3 4 5 6] [7] [8 9 10 11] [12 ... 16383] [16384 ...] 

 Sequence      I   Area A      Area B         Right Margin 

Variable is similar to the traditional format, but without the right margin.  This 
format was used primarily with one particular compiler, and should not be 
used in new code.  Elastic COBOL does support it for maintaining existing 
code.  

Free Format 

[1] [2 ... 16383] [16384 ...] 

 I   Area A & B    Right Margin 

Free format removes the sequence area, overlaps the indicator column with 
the program area, and has no right margin.  Free format is very similar to 
other modern languages in its formatting, allowing program code to appear 
everywhere with a liberal amount of white space.  Inline comment indicators 
('*>' and '|') were introduced to help with this format, as was nonnumeric 
literal concatenation ('&').



 

Elastic COBOL Programmer’s Guide 2 

COBOL Files 

Elastic COBOL expects COBOL source files to be line delimited text files, in 
the format appropriate to the system.   

For most systems, this means ASCII formatted text files.  For iSeries and 
zSeries systems, this means EBCDIC formatted text files.  Elastic COBOL 
supports a smart auto detection system that is capable of compiling ASCII 
on EBCDIC machines and EBCDIC on ASCII machines, but the natural 
format for the system is recommended. 

Elastic COBOL also supports Unicode COBOL source, where every 
character takes two bytes.  It enters this mode automatically when the first 
two bytes of the file are a Unicode byte order marker. 

The COBOL source files should not be record oriented unless the underlying 
operating system automatically converts from record oriented to text 
oriented files on demand. 

Copy Files 

Elastic COBOL expects line delimited text files as compiler input for both 
COBOL files and copy files.  If the copy files are in a record oriented, tree, or 
another repository format, they must be converted to line delimited text files 
prior to invoking the Elastic COBOL compiler.  

Users of the Elastic COBOL IDE can drag & drop any required copy files into 
the projects ‘copylib’ folder. 

Users of the Elastic COBOL compiler from the command line should note 
that the compiler first searches the current directory, but also searches 
through the path specified by the environment variable COPYPATH for any 
copy files required by the COBOL program.  

Specific file names that include the complete file extension must be placed 
within quotes. Elastic COBOL does not generally require quotes around the 
name, but they are required when including an extension such as COPY 
myfile.cpy; otherwise, the compiler will assume that the period defining the 
extension is the end of sentence.  An unqualified copy file name will result in 
an error. 

It is recommended to include the full filename rather than leave any 
extension implicit, but Elastic COBOL does support implicit copy file 
extensions of .cpy, .wcb, .cpb, .cdb, .cfd, .wrk, .lnk, .lks, .mnu, .prd, .evt, and 
.def.  Elastic COBOL also supports the uppercase version of those 
extensions on systems supporting case-sensitive filenames. 

The syntax COPY x OF y copies the filename x from the sub-directory y.  So 
x must be a filename and y must be a directory name.  This combination 
may be anywhere on the COPYPATH. 



 

Elastic COBOL Programmer’s Guide 3 

Literals 

Literals are inline data items, such as "Hello" and 123.45. 

Nonnumeric literals may be expressed using either single quotes ('Hello') or 
double quotes ("Hello").  Double quotes are standard and should be used in 
new code, but single quotes are supported for compatibility.  No compiler 
options are necessary, and a single COBOL source code segment may 
contain both formats, but this practice is not recommended.  A compiler 
option is available for handling quotes, but it only affects the meaning of the 
special register QUOTES. 

Numeric literals may be expressed in base 10 normally, but also may be 
expressed in alternate base numerics.  Normally the period (.) is used for 
fractional digits, but the comma (,) may be used with the expression 
DECIMAL IS COMMA clause. 

Nonnumeric and numeric literals are normally expressed using a direct 
quote, but also may be expressed using based literals.  Based literals 
specify that a literal is formed using an alternate numeric base, such as 16 
or 8, rather than 10.  They also specify that the literal is formed from the 
symbolic concatenation of digits rather than the actual text of the literal. 

National literals may be expressed using either the N"literal" or G"literal" 
notation.  It is recommended that the N"literal" notation be used in new code 
as it is the ANSI Standard method for defining National literals. 

 



 

Elastic COBOL Programmer’s Guide 4 

Chapter 2 – Program Lifecycle 

Overview 

The program lifecycle discussed in this guide is the COBOL program 
procedural flow and any data the program may access.  The lifecycle is a 
runtime execution concept.  There are three major components of the Elastic 
COBOL program lifecycle, not all are used in every program: COBOL, Java 
and Native. 

COBOL may be simply by itself in a single program with no calls.  This is 
true for small utility programs and helps to lead into the more complex 
applications. 

COBOL calls to COBOL, when both are compiled in Elastic COBOL, are not 
significantly more complex than single COBOL programs.  If the one COBOL 
program is compiled natively using a combination of COBOL compiler 
technologies, for and is discussed in this chapter as “COBOL to Native”. 

COBOL calls to native code move the flow of control beyond the scope of 
the Java Virtual Machine.  The native code may be written in a variety of 
languages, and since this moves beyond the platform independent nature of 
Elastic COBOL, the capabilities vary per platform.  A 'C' language interface 
is discussed later as a mixed language application. 

COBOL calls to Java are made through a variety of means, allowing either 
the COBOL side or the Java side to exist transparently of the other side.   

Java calls to COBOL are enabled through the use of Elastic COBOL.  To the 
Java programmer, COBOL programs compiled with Elastic COBOL are just 
like other Java classes. 

Elastic COBOL programs can be separated into server and client 
components and run remote from one another. If one or more program units 
are in Java the program interface is treated in a similar manner to a program 
unit compiled with Elastic COBOL.  A remote client or server in Java is a 
natural extension of the COBOL support within the Elastic COBOL compiler. 

COBOL 

A COBOL application is the most common form of program. The main 
COBOL program is the first or only one run in an execution session. 

It begins at the first paragraph not defined in the declaratives, as do all 
COBOL programs.  It ends at the final statement in the program or at a 
STOP RUN or GOBACK when there are no calling programs. 

Any COBOL program may be a main program, so when there are multiple 
programs the system must be told which one is the main.  Executing a 
program from a command line is done by specifying the program-id as part 
of the ‘java’ command.  The COBOL program can be executed within the 



 

Elastic COBOL Programmer’s Guide 5 

Elastic COBOL IDE by simply running the selected program within the 
framework. More information about using the IDE is available in the Elastic 
COBOL User’s Guide.



 

Elastic COBOL Programmer’s Guide 6 

A COBOL program without a LINKAGE SECTION is naturally a main 
program.  A COBOL program with a PROCEDURE DIVISION USING may 
be a main program in Elastic COBOL.  It will retrieve its linkage arguments 
from the command line parameters automatically.  This allows for easy unit 
testing of a subprogram, but this is not a portable construct. 

Other COBOL vendors may use various methods for naming programs; 
some use the IDENTIFICATION DIVISION name and the filename name for 
identifying a program which results in two implicit names to every COBOL 
program. Elastic COBOL uses the IDENTIFICATION DIVISION name; this is 
specified via the PROGRAM-ID, CLASS-ID, etc.  The name itself is 
externalized so it is valid for the file system and to reflect the case 
independent nature of COBOL.  The externalized name has letters 
converted to lower case, and spaces to underscores.  Certain reserved 
words may have an underscore appended.  This externalized name is only 
necessary for the main when running from an external environment, so any 
CALL may include upper-case letters.  When there are the two different 
names, the compiler will issue a warning when the two names do not match 
one another. 

The program itself is compiled to a .class file, the externalized program 
name with the file extension .class.  This is the Java executable.  There are 
also .jar files, or Java Archives; these are an archive of .class files and other 
resources.  In addition to this, .war, .ear and other formats exist which are 
specialized versions of .jar files. 

The COBOL program is maintained in COBOL source code and executes 
within the Java execution environment.  Elastic COBOL insulates the user 
from the need to learn Java programming concepts. However, like in the 
past, it is beneficial understand the application’s operating system or 
execution environment, and so with Elastic COBOL, the user should be 
aware of some basic Java execution concepts. 

The operating system uses a PATH environment variable to find executable 
programs.  Java uses a CLASSPATH environment variable to find 
executable Java programs.  Since a single CLASSPATH environment 
variable for the entire system is unwieldy, most executions use a 
CLASSPATH specified for the single execution to specify only the files 
necessary.  The CLASSPATH must include the application program, the 
Elastic COBOL runtime, and any third-party or extension runtime like XML 
support.  This is handled automatically from the Elastic COBOL IDE, but this 
knowledge can help with troubleshooting and deployment. 

 

COBOL to COBOL 

COBOL to COBOL is a call from one source COBOL program to another 
target COBOL program local to the machine.  The target may be the same 
as the source for recursion.  The four main mechanisms for transfer of 
control are CALL, INVOKE, THREAD and SESSION. 



 

Elastic COBOL Programmer’s Guide 7 

Call 

The call must be made to the name given by the IDENTIFICATION 
DIVISION, not the source code's filename.   

The call from source to target is done using the traditional COBOL CALL 
verb.  The parameters may be any of the Elastic COBOL datatypes.  The 
parameters may be passed by content, passing the actual data across, or by 
reference, passing a reference pointing back to the original data.  Any data 
changes by the target are local to the target when passed by content, but is 
reflected back in the source program when passed by reference.  Passing 
data by value picks BY REFERENCE or BY CONTENT as appropriate to the 
datatype for a call to Java or native code.  Only traditional COBOL datatypes 
may be passed BY REFERENCE; OBJECT types may only be passed BY 
CONTENT or BY VALUE, but the compiler will automatically convert the 
REFERENCE to CONTENT type when necessary.  Literals may only be 
passed BY CONTENT or BY VALUE, but the compiler will automatically 
convert the REFERENCE to CONTENT type when necessary. 

If the call is not successful, the failure will be returned to the calling program.  
If an ON EXCEPTION clause is coded for the CALL, then the ON 
EXCEPTION handler has complete control.  If no ON EXCEPTION clause is 
coded for the CALL, then a dialog will be presented to the user detailing the 
error.  There are options for disabling this dialog under all circumstances.  
An extension to the ON EXCEPTION clause allows an identifier to be 
specified immediately after the keyword EXCEPTION; it will receive the 
exception text.  As this exception text may grow without bounds, choose a 
PIC size suitable for display or diagnostics. 

Control is transferred at the point of CALL, to return later to the same point 
under most circumstances.  A STOP RUN in the target will end not only the 
target program but all other source programs in the call chain. Control may 
be returned from the target back to the source when the target issues a 
GOBACK or EXIT PROGRAM verb, or when the target reaches the end of 
its code. 

The target program may be the same as the source program, either directly 
or indirectly through other intervening calls.  This is recursion.  As most data 
is shared between the source and target program, particular care must be 
taken with recursion.   

To allow recursion to better operate, there is a LOCAL-STORAGE SECTION 
that operates in a similar way to the WORKING-STORAGE SECTION.  
Unlike WORKING-STORAGE that has only one instance per program 
session, the LOCAL-STORAGE is unique to each instance of the program, 
even within the same program session.  The LOCAL-STORAGE section has 
a higher overhead per call in that it must be initialized each call, and it has 
additional memory per program instance. 

In a call, COBOL programs have traditionally passed data back by 
reference.  There is a more function oriented manner allowed as well by 
many COBOL implementations including Elastic COBOL.  This involves 
coding RETURNING or GIVING identifier after the PROCEDURE DIVISION 



 

Elastic COBOL Programmer’s Guide 8 

USING.  This value is returned to the caller in slot given by CALL 
RETURNING identifier. 

Example 1: 

77 INPUT-1 PIC 99. 
77 INPUT-2 PIC 99. 
77 OUTPUT-1 PIC 999. 
 
PROCEDURE DIVISION USING INPUT-1 INPUT-2 RETURNING OUTPUT-1. 

Example 2: 

CALL "MY-FUNCTION" USING MY-INPUT-1 MY-INPUT-2 RETURNING MY-RESULT. 

Invoke 

The INVOKE verb is similar to the CALL verb, but is used for object oriented 
programming.  It may INVOKE methods on objects written in either COBOL 
or Java; INVOKE on Java is covered later. 

The COBOL program may define CLASS-ID style programs with METHOD-
ID methods; this COBOL program may then be constructed and then have 
its methods invoked.   

Control is returned at the end of the method unless a STOP RUN is called. 

Thread 

Threads are separate paths of control flow within the same process and 
session.   

Certain threads are created automatically in the background by the runtime 
environment.  Threads exist to paint the graphics on a graphical screen, 
print to the printer, or pre-parse XML. 

Threading can also be under direct program control.  The THREAD verb and 
THREAD options to other control flow verbs give direct control over program 
threading to the COBOL program. 

THREAD operates in much the same way as GO TO, but instead of 
transferring control, a new thread is first created and then the GO TO is 
performed.  The original thread of execution continues simultaneously with 
the new thread of execution.  The threading is completely simultaneous only 
as allowed by multi-processor systems, but the illusion of simultaneity is 
maintained by the operating system. 

PERFORM THREAD and CALL THREAD do the perform or the call in a 
separate thread, continuing with the original thread as well. 

Most COBOL programs do not require threading, but it can be useful 
especially for long-running operations and can provide a better user 
experience. 



 

Elastic COBOL Programmer’s Guide 9 

Sessions 

Sessions execute no different from threads in execution.  The difference is 
the lifecycle of the associated data. 

In a thread, data in the WORKING-STORAGE is shared between threads.  
This is fine for new programs that take explicit advantage of threading, but 
not for running multiple instances of traditional programs which were not 
constructed to take advantage of threading. 

In a more traditional program, the program may be run as a whole multiple 
times on the same computer.  Each copy of the program is running in an 
entirely separate process, the operating system's way of separating one 
program from another.  A transactional program may have a copy for each 
transaction, with the operating system or other invisible layers handling this 
separation of concerns. 

The session concept is a way of allowing that process model to exist within a 
single process, rather than requiring multiple processes.  In this way, only a 
single startup is required, only a single copy of program code, yet multiple 
copies of the same program with different WORKING-STORAGE sections 
may exist simultaneously. 

A session is not normally started from a COBOL program, but rather from 
the surrounding environment.  When running as a Servlet or Enterprise 
JavaBean, Elastic COBOL programs are setup to automatically run as 
separate sessions with separate data.  The session concept is important for 
calls from Java to COBOL and is covered more in depth there. 

Sessions may be started from COBOL programs as well using the SESSION 
verb; it operates the same as the THREAD verb, but for the scope of its 
data. 

WORKING-STORAGE is separate for each session of a COBOL program; 
no data sharing is available through WORKING-STORAGE.  Rather, there is 
a SHARED-STORAGE section that is shared by all sessions in a single 
process.  The SHARED-STORAGE should be used sparingly since sessions 
should not in general communicate with one another directly.  Often, session 
environments will define their own mechanisms for inter-session 
communication; for example, Servlet sessions may use session variable 
parameters. 

COBOL to COBOL Remote 

Elastic COBOL supports the Remote Method Invocation protocol directly.  A 
later generation beyond Remote Procedure Call, Elastic COBOL has 
adapted it to function with traditional COBOL programs.  The call side is 
known as the client, the side with the remote program to call is known as the 
server. 

A remote call is done the same way as a local call.  The CALL name is 
different though; rather than a simple name, it must give a local and method 
of call.   



 

Elastic COBOL Programmer’s Guide 10 

The remote call name is "rmi:name@location".  The rmi: specifies Remote 
Method Invocation, the method of the call.  The name is the same 
IDENTIFICATION DIVISION name always specified.  The @location 
specifies where to find the program, the machine on which it is located.  For 
example, CALL "rmi:my-program@myhost.com".  The parameters are 
always passed BY CONTENT, regardless of the convention requested.  
Data may be passed back from the call using the PROCEDURE DIVISION 
RETURNING identifier through to the CALL RETURNING identifier.  This 
call is identical whether the code is COBOL or Java.  The client side does 
not require anything else. 

A simple name may be used in the program code and then be aliased to the 
complete name by setting a system property or configuration parameter.  
For example, the configuration file may contain "mysimplename=rmi:my-
remote-program@myhost.com"; then a CALL "mysimplename" will actually 
refer to the remote program. 

The setup for the remote program should be handled with care.  The setup 
itself is not complex, but the program should be running only under an 
account with privileges only to the level necessary.  Never run a remote 
program under Administrator or root accounts.  If running a production 
remote program, follow all the security procedures normally associated with 
remote procedure calls. 

The setup of the remote program is done in two parts, the registry and the 
program itself.   

The registry is called 'rmiregistry' and is included with Java.  It must be run 
first, as it is the registry service where the program will be registered.  The 
registry acts a telephone book, a lookup service that knows what services 
are available on the system and how to connect remote callers to them.  The 
rmiregistry program itself takes no parameters, but the CLASSPATH must 
include the application classes and the Elastic COBOL runtime (ecobol.jar).  
If the CLASSPATH is not set properly, the application will not be found.  This 
is the most difficult part.  The rmiregistry program will not return. 

The program itself must be registered as a service on the server machine.  
Often, this is the same machine as the rmiregistry.  To do so, again the 
CLASSPATH must be set to include the application and the Elastic COBOL 
runtime (ecobol.jar), but this may be done on the same command line.  Run 
the command: 

java -cp <ecobol. jar>;<application-dir> com.heirloomcomputing.ecs.run.rmi program-id… 
 

Every program-id specified will be run as a service.  The program-id is the 
externalized program-id name.  Multiple program-id's may be run as services 
at the same time.  After they report being registered and bound, they are 
ready to be called.  This program will not return. 



 

Elastic COBOL Programmer’s Guide 11 

COBOL to Java 

Elastic COBOL may call Java using a variety of methods.  The burden of call 
conformance may be placed on the Java side or it may be placed on the 
Elastic COBOL side.  When calling Java API functions, the burden is placed 
on the Elastic COBOL side.  When calling Java classes made specifically for 
Elastic COBOL, the burden is placed on the Java side.  In neither case is the 
burden heavy, but it influences design decisions. 

Invoke 

When calling API, Application Programming Interface, functions designed 
without regard to COBOL calling conventions, the Elastic COBOL program 
must conform to the calling convention expected by the API.  The API will be 
documented for Java, so it may say that it is a static class with an int and a 
String parameter, or an object method with a short and a char.  The INVOKE 
verb is used for this, and it is detailed extensively in the Language 
Reference INVOKE verb. 

Use datatypes in COBOL matching the expected datatypes in the Java API.  
For byte, use SIGNED-BYTE; for short, use SIGNED-SHORT; for int, use 
SIGNED-INT; for long, use SIGNED-LONG; for String, use PIC X(n>1); for 
char, use PIC X(1).  Always pass BY VALUE so it will conform to the type.  
Other type conversions are made implicitly when passing BY VALUE and 
these are documented at the INVOKE verb. 

Callable interface 

This section is for Java programmers wanting to grant direct access to 
Elastic COBOL programs using the CALL verb. 

The most natural method for calling from COBOL to Java is the traditional 
CALL verb.  This is useful especially for moving traditional COBOL programs 
to the Elastic COBOL environment to replace system functions with platform 
independent versions.  The CALL verb can work with Java programs if they 
implement the com.heirloomcomputing.ecs.api.Callable interface. 

The Callable interface must be implemented by any Java class to be called.  
It contains only one method to be defined, and it is the method which is 
called when the COBOL makes a call.  The method has only two 
parameters, a Boolean array and an Object array; either or both of these 
may be null.  It returns an Object or any descendent of Object.  The method 
may throw an exception; it will invoke the ON EXCEPTION clause of the call 
to indicate call failure. 

The Boolean array contains flags as to whether or not the call was 
requested as by reference or by content; by value will be converted to one of 
these automatically. 

The Object array contains the actual data parameters passed.  Usually, the 
elements of this array will implement 



 

Elastic COBOL Programmer’s Guide 12 

com.heirloomcomputing.ecs.api.Datatype for traditional COBOL datatypes, 
but the COBOL program may pass Object references explicitly as well.  The 
number of parameters may be retrieved in the usual way, by examining the 
.length attribute of the array. 

The Java class may be coded to allow any combination it desires.  Check 
that the Object implements any necessary interfaces or extends any 
necessary class that the Java class may require; it is operating in the Java 
environment at this point, so the Java program has all the control it normally 
would.  The Elastic COBOL application classes and methods are on the call 
stack, just as any other Java classes and methods would be. 

Normally, the parameters implement 
com.heirloomcomputing.ecs.api.Datatype.  Once cast to Datatype, they may 
be converted to or from any number of Java datatypes.  The Datatype allows 
groups to be examined one element at a time, each of the elements being a 
Datatype as well.  Datatype allows arrays to be examined one element at a 
time, each of the elements being a Datatype as well.  The type of the 
Datatype may be examined to determine preferred actions.  Any COBOL 
datatype that has a COBOL memory image (PIC X, PIC 9, etc.) will 
implement Datatype.  Do not rely on any additional methods implemented by 
the actual class, rely only on the Datatype implementation. 

The return type should be String, Number or Datatype.  It will be treated as a 
move to the RETURNING identifier. 

The following are the interfaces necessary for calling from Elastic COBOL to 
Java: 

 
package com.heirloomcomputing.ecs.api; 
 
/** 
 * The Callable interface must be implemented by Java classes 
 * in order to be called by COBOL programs using the CALL  
 * verb. 
 * 
 * @see Datatype 
 */ 
public interface Callable 
{ 
    /** 
     * This is the method called by the CALL verb for a program implementing 
     * Callable. 
     * <p> 
     * If there are no parameters, byReference and params may be null. 
     * <p> 
     * If there are parameters, byReference.length and params.length 
     * will be the number of parameters. 
     * <p> 
     * The Objects in params generally implement Datatype.  The Datatype 
     * interface allows conversion to and from a variety of common Java 
     * datatypes. 
     * <p> 
     * If the COBOL program passes Object declared as OBJECT [REFERENCE], 
     * then the object itself will be passed directly.  If the Callable 
     * is intended only for traditional data, just cast the data to 
     * Datatype. 
     * <p> 



 

Elastic COBOL Programmer’s Guide 13 

     * Throwing an Exception is allowed.  This will invoke the ON EXCEPTION 
     * clause of the CALL.  If there is no ON EXCEPTION clause, then a message 
     * dialog will appear with the information. 
     * <p> 
     * The COBOL program must be ready to handle the exception if user input 
     * is to be suppressed from an exception. 
     * <p> 
     * Only use fromType methods on a param if the byReference is true. 
     * <p> 
     * @param byReference   possibly null, a Boolean for each parameter,  
     *                      true if by reference, false if by content  
     *                      (by value is generally by content) 
     * @param params        possibly null, an Object for each parameter,  
     *                      implementing Datatype for COBOL-oriented data,  
     *                      though any object including null may be passed 
     * @return value given to the CALL GIVING|RETURNING, should be String, 
     *                      java.lang.Number (e.g., Integer) or Datatype. 
     */ 
    public Object call(Boolean[] byReference,Object[] params) throws Throwable; 
} 
 
package com.heirloomcomputing.ecs.api; 
 
/** 
 * Datatype is an interface by which to describe data and data 
 * conversions between Datatypes.  This interface is implemented 
 * by COBOL-oriented data passed to Callable programs. 
 * 
 * @see Callable 
 * @see Cancelable 
 */ 
public interface Datatype 
{ 
    // New Type Definitions (Bit Vectors) 
     
    // All Invalid Types are negative. 
    public static final int TYPE_INVALID=-1; 
     
    // Masks 
    public static final int TYPE_SIGN_MASK=7; 
    public static final int TYPE_JUST_MASK=8; 
    public static final int TYPE_NUMERIC_MASK=16; 
    public static final int TYPE_CLASS_MASK=TYPE_NUMERIC_MASK|32|64; 
    public static final int TYPE_VARIANT_MASK=128|256|512; 
     
    // Sign 
    public static final int TYPE_SIGN_NONE=0; 
    public static final int TYPE_SIGN_LEAD=1; 
    public static final int TYPE_SIGN_TRAIL=2; 
    public static final int TYPE_SIGN_LEAD_SEP=3; 
    public static final int TYPE_SIGN_TRAIL_SEP=4; 
     
    // Justification 
    public static final int TYPE_JUST_LEFT=0; 
    public static final int TYPE_JUST_RIGHT=8; 
     
    // Storage Class 
    public static final int TYPE_NUMERIC=16; 
    public static final int TYPE_NON_NUMERIC=0; 
     
    // Storage Class Numerics 
    public static final int TYPE_CLASS_ZONED=TYPE_NUMERIC|0; 
    public static final int TYPE_CLASS_BINARY=TYPE_NUMERIC|32; 



 

Elastic COBOL Programmer’s Guide 14 

    public static final int TYPE_CLASS_PACKED_DECIMAL=TYPE_NUMERIC|64; 
    public static final int TYPE_CLASS_FLOAT=TYPE_NUMERIC|32|64; 
     
    // Storage Class Non-Numerics 
    public static final int TYPE_CLASS_TEXT=TYPE_NON_NUMERIC|0; 
    public static final int TYPE_CLASS_GROUP=TYPE_NON_NUMERIC|32; 
    public static final int TYPE_CLASS_TABLE=TYPE_NON_NUMERIC|64; 
     
    // Storage Class Usage Formats 
    public static final int TYPE_VARIANT_0=0; 
    public static final int TYPE_VARIANT_1=128; 
    public static final int TYPE_VARIANT_2=    256; 
    public static final int TYPE_VARIANT_3=128|256; 
    public static final int TYPE_VARIANT_4=        512; 
    public static final int TYPE_VARIANT_5=128|    512; 
    public static final int TYPE_VARIANT_6=    256|512; 
    public static final int TYPE_VARIANT_7=128|256|512; 
     
    // Definition 
     
    /** 
     * Return one of the TYPE_ types that best describes this Datatype. 
     * The TYPE is a bit mask combination of the various TYPE_ constants 
     * in this class.   
     * <p> 
     * The SIGN clauses describe the sign storage ability of the datatype. 
     * The JUST clauses describe the left/right justification of the datatype. 
     * The NUMERIC/NON-NUMERIC describe the general storage class; this overlaps 
     * with CLASS. 
     * <p> 
     * The CLASS clauses describe the general numeric or non-numeric storage 
     * format, but not the particular storage bytes used.  The particular 
     * storage bytes used are further described with VARIANT clauses. 
     * <p> 
     * The GROUP and TABLE classes may be further analyzed using the 
     * getElements() method to obtain the component Datatypes. 
     * <p> 
     * All invalid types are negative. 
     * 
     * @return TYPE_value 
     */ 
    public int getType(); 
     
    /** 
     * The length in internal bytes, where meaningful. 
     * 
     * @return length in bytes 
     */ 
    public int getLength(); 
     
    /** 
     * The number of decimal positions, where meaningful. 
     * 
     * @return number of decimal positions 
     */ 
    public int getDecimalPositions(); 
     
    // Internal Access 
    // 
    // Internal Access does not conversion of the data; it is 
    // moved as directly as possible. 
 
    /** 



 

Elastic COBOL Programmer’s Guide 15 

     * Return copy of the internal byte representation. 
     * 
     * @return byte[] copy of the internal data. 
     * 
     * @see #fromByteArray 
     */ 
    public byte[] toByteArray(); 
     
    /** 
     * Return copy of the internal byte representation. 
     * 
     * @param param byte[] is the destination for the copy 
     * @param offset into the byte[] 
     * @param length for the given length 
     */ 
    public void toByteArray(byte[] param,int offset,int length); 
     
    /** 
     * Set the internal byte representation using the given byte[]. 
     * 
     * @param param the byte[] from which to copy. 
     * 
     * @see #toByteArray 
     */ 
    public void fromByteArray(byte[] param); 
 
    /** 
     * Set the internal byte representation using the given byte[]. 
     * 
     * @param param byte[] is the source of the copy 
     * @param offset into the byte[] 
     * @param length for the given length 
     * 
     * @see #toByteArray 
     */ 
    public void fromByteArray(byte[] param,int offset,int length); 
     
    // Conversion 
    // 
    // Conversion massages data if necessary as it is moved 
    // from one type to another. 
     
    /** 
     * Conversion method. 
     * 
     * Return the conversion of the Datatype into a Boolean. 
     * 
     * @return Boolean representation of Datatype. 
     * 
     * @see #fromBoolean 
     */ 
    public Boolean toBoolean(); 
 
    /** 
     * Conversion method. 
     * 
     * Return the conversion of the Datatype into a byte. 
     * 
     * @return byte representation of Datatype. 
     * 
     * @see #fromByte 
     */ 
    public byte toByte(); 



 

Elastic COBOL Programmer’s Guide 16 

 
    /** 
     * Conversion method. 
     * 
     * Return the conversion of the Datatype into a char. 
     * 
     * @return char representation of Datatype. 
     * 
     * @see #fromChar 
     */ 
    public char toChar(); 
 
    /** 
     * Conversion method. 
     * 
     * Return the conversion of the Datatype into a short. 
     * 
     * @return short representation of Datatype. 
     * 
     * @see #fromShort 
     */ 
    public short toShort(); 
 
    /** 
     * Conversion method. 
     * 
     * Return the conversion of the Datatype into an int. 
     * 
     * @return int representation of Datatype. 
     * 
     * @see #fromInt 
     */ 
    public int toInt(); 
 
    /** 
     * Conversion method. 
     * 
     * Return the conversion of the Datatype into a long. 
     * 
     * @return long representation of Datatype. 
     * 
     * @see #fromLong 
     */ 
    public long toLong(); 
 
    /** 
     * Conversion method. 
     * 
     * Return the conversion of the Datatype into a float. 
     * 
     * @return float representation of Datatype. 
     * 
     * @see #fromFloat 
     */ 
    public float toFloat(); 
 
    /** 
     * Conversion method. 
     * Return the conversion of the Datatype into a double. 
     * @return double representation of Datatype. 
     * @see #fromDouble 
     */ 
    public double toDouble(); 



 

Elastic COBOL Programmer’s Guide 17 

 
    /** 
     * Conversion method.    * 
     * Return the conversion of the Datatype into a BigDecimal. 
     * @return java.math.BigDecimal representation of Datatype. 
     * @see #fromBigDecimal 
     */ 
    public java.math.BigDecimal toBigDecimal(); 
 
    /** 
     * Conversion method.  This method is here for symmetry 
     * with fromDatatype; it generally will just return 'this'. 
     * @return Datatype representation of Datatype. 
     * @see #fromDatatype 
     */ 
    public Datatype toDatatype(); 
 
    /** 
     * Conversion method. 
     * 
     * A toText() method is used rather than toString() to allow 
     * the this interface to be applied to existing classes with 
     * existing toString() methods which may have different 
     * meanings. 
     *  
     * The toText() method returns the human-readable text 
     * representation of a Datatype, suitable for display to 
     * the user.  This should convert any internal formats to 
     * external formats and this should display international 
     * characters correctly. 
     * @return String representation of Datatype. 
     * @see #fromText 
     */ 
    public String toText(); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the Boolean. 
     * @param Boolean value by which to set the Datatype. 
     * @see #toBoolean 
     */ 
    public void fromBoolean(Boolean param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the byte. 
     * @param byte value by which to set the Datatype. 
     * @see #toByte 
     */ 
    public void fromByte(byte param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the char. 
     * @param char value by which to set the Datatype. 
     * @see #toChar 
     */ 
    public void fromChar(char param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the short. 
     * @param short value by which to set the Datatype. 



 

Elastic COBOL Programmer’s Guide 18 

     * @see #toShort 
     */ 
    public void fromShort(short param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the int. 
     * @param int value by which to set the Datatype. 
     * @see #toInt 
     */ 
    public void fromInt(int param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the long. 
     * @param long value by which to set the Datatype. 
     * @see #toLong 
     */ 
    public void fromLong(long param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the float.  
     * @param float value by which to set the Datatype. 
     * @see #toFloat 
     */ 
    public void fromFloat(float param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to be equal to the double. 
     * @param double value by which to set the Datatype. 
     * @see #toDouble 
     */ 
    public void fromDouble(double param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype to the BigDecimal. 
     * @param java.math.BigDecimal value by which to set the Datatype. 
     * @see #toBigDecimal 
     */ 
    public void fromBigDecimal(java.math.BigDecimal param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype using the contents 
     * of the parameter Datatype. 
     * @param Datatype value by which to set the Datatype. 
     * @see #toDatatype 
     */ 
    public void fromDatatype(Datatype param); 
     
    /** 
     * Conversion method. 
     * Sets the contents of the Datatype from a Unicode String. 
     * @param String value by which to set the Datatype. 
     * @see #toText 
     */ 
    public void fromText(String param); 
     
    // Group/Array 
     



 

Elastic COBOL Programmer’s Guide 19 

    /** 
     * If this Datatype is composed of other Datatypes, 
     * return the Datatypes of which this is composed. 
     * Those elements may in turn be composed of other 
     * Datatypes.  This is useful for examing a group 
     * structure by its elements rather than as a whole. 
     * This must return null for Datatypes that cannot 
     * be decomposed into other Datatypes.   
     * <p> 
     * This should not decompose into artificial Datatypes;  
     * that is, a text Datatype should not return an array of 
     * Datatypes for each character in the text under 
     * normal circumstances. 
     * <p> 
     * The Object[] may contain other arrays rather than 
     * Datatypes; these arrays for multi-dimensional 
     * structures must be traversed to obtain all elements. 
     * 
     * @return Object[] elements in this Datatype. 
     */ 
    public Object[] getElements();    // null if not array or group 
}  

COBOL to Java Remote 

Refer to COBOL to COBOL Remote and COBOL to Java for most of the 
information regarding COBOL to Java Remote calls. 

The COBOL program on the client is done the same way as if it were the 
COBOL client of a COBOL server.  The name of the program is the Java 
class name. 

The Java server is run the same as if it were a COBOL program, using 
com.heirloomcomputing.ecs.run.rmi, but use the Java class name instead of 
program-id.  No stubs are necessary for standard RMI functionality; the stub 
for com.heirloomcomputing.ecs.run.rmi is already included in the Elastic 
COBOL runtime. 

If using a custom RMI solution, there is an alternative method.  Instead of 
running com.heirloomcomputing.ecs.run.rmi to serve the Java program, it 
may be served by implementing the RemoteCallable interface.  In such a 
case, stubs need to be generated using rmic; the RemoteCallable interface 
must be exposed remotely and bound to the server.  Follow the instructions 
for the custom RMI solution in this case. 

The definition for RemoteCallable is: 

 

package com.heirloomcomputing.ecs.api; 
 
/** 
 * The RemoteCallable interface implements a program callable using RMI. 
 */ 
public interface RemoteCallable extends java.rmi.Remote 
{ 
    /** 
     * @param params The Serializable parameters to the function. 
     */ 
    public java.io.Serializable call(java.io.Serializable[] params) throws Exception; 



 

Elastic COBOL Programmer’s Guide 20 

} 

 

For RemoteCallable, it is important to note that all the parameters and the 
return code must be Serializable.  This must be stressed, that all the 
parameters and the return code must be Serializable.  The traditional 
COBOL datatypes are Serializable already, as are many of the basic Java 
types, but certain object references such as File are not. 

Java to COBOL 

Java code can call COBOL code as if it were just another Java class.  The 
Java class for the COBOL program is based off the identification division, as 
discussed earlier.  

Create an instance of the class using the default constructor; every instance 
of the class is a session.  Every instance has its own WORKING-STORAGE 
section.  Multiple instances of the same class may safely exist 
simultaneously.  Each will retain its own state.  Moreover, the calls each of 
the instances make to other COBOL programs will maintain their own state 
automatically, as if each instance where its separate process.  All the 
standard COBOL rules about maintaining WORKING-STORAGE from one 
call to the next, the CANCEL verb, etc. are maintained correctly for the 
perspective of each separate session.  This is what allows Servlets, 
Enterprise JavaBeans, and other advanced Java technologies to operate 
seamlessly with Elastic COBOL programs. 

The COBOL object may be defined as either a CLASS-ID or as a 
PROGRAM-ID.  If defined as CLASS-ID, then the methods available to it 
depend entirely upon the METHOD-ID's defined for the COBOL class.  If 
defined as PROGRAM-ID, then there is normally only one method called on 
it, call.  The COBOL program implements 
com.heirloomcomputing.ecs.api.Callable, just as a Java program being 
called by COBOL does.   

Using this API, an array of Objects is passed to the COBOL program.  The 
array, being created from Java, normally follows the Java conventions of 
supporting String and Number extensions (Integer, etc.), but custom 
implementers of com.heirloomcomputing.ecs.api.Datatype may be passed 
as well.  If the PROCEDURE DIVISION USING has object parameters, then 
an object of the appropriate type may be safely passed.  The PROCEDURE 
DIVISION RETURNING identifier is the result of the call. 

In addition to this, the GET-PROPERTY and SET-PROPERTY phrases are 
available to use on data items.  These generate getters and setters in the 
COBOL program, accessible from a Java program.  The types are 
dependent upon the usage of the COBOL data, but the name used is a 
standard Java name.  Getters begin with get, setters begin with set.  Each 
hyphenated section of the variable name is distinguished by placing the first 
letter of the name in uppercase.  This is a very simple way for COBOL and 
Java programs' data to interact. 



 

Elastic COBOL Programmer’s Guide 21 

Java to COBOL Remote 

See COBOL to COBOL Remote for information on running the COBOL 
program as an RMI server. 

See COBOL to Java Remote for the definition of RemoteCallable. 

All COBOL programs are served using com.heirloomcomputing.ecs.run.rmi 
implement the RemoteCallable interface.  The Elastic COBOL runtime 
(ecobol.jar) needs to be in the CLASSPATH of the client; the remote 
application itself does not.  The remote COBOL program should be handled 
as if it only implements RemoteCallable. 

Follow the normal RMI Java procedures for obtaining the remote reference 
and cast it to RemoteCallable.  Then it can be treated much the same as a 
normal Java to COBOL call. 

COBOL to Native 

Elastic COBOL code may call native code, and does not require actual JNI 
(Java Native Interface) coding to do so.  Whenever attempting to call native 
code, first be sure that the native function is actually necessary.  There may 
be a COBOL function already included for the same job, or a small snippet 
of Java code may be able to replace the native function.  When there is no 
alternative to native code, there are several methods available. 

Programs 

The easiest method for calling native code is used when the native code is 
an entire, executable program.  The syntax for this is a simple extension, 
adding the keyword PROGRAM after CALL. 

Example (Windows): 

 CALL PROGRAM "notepad.exe" USING "myfile.txt" 

This calling functionality operates in as cross-platform a manner as possible.  
If the program is found using the normal procedures for the operating 
system, it is executed using the CALL parameters as command-line 
parameters. 

In a similar method, an ASSIGN TO "|programname" creates an Inter-
Process Communication (IPC) pipe.  When the file is opened, the program is 
executed; the program's standard input/output channels are redirected to 
become the COBOL file, so input and output to the file become input and 
output to the program. 

These call patterns do create a separate process; sometimes, this is 
desired, other times it is not.  If a separate process is not desired, look 
further into these alternate methods. 



 

Elastic COBOL Programmer’s Guide 22 

Shared Libraries 

In Windows and Linux, calls to shared libraries (.dll or .so extension) are 
very direct.  This functionality is dependent upon certain capabilities of the 
architecture and operating system, so it is not available yet on all systems; 
for other systems, see the stub method below. 

The shared library must be loaded, the functions of the library called, and 
then the library unloaded; the unloading is implicit at program termination if 
not done explicitly. 

To load the library, CALL "library-name" (e.g., CALL "User32.dll"); the CALL 
will return a value for the library pointer.  The value will be non-zero upon 
success; it will be zero upon failure.  Until the library is unloaded, the 
functions in the shared library are available.  To unload the library, CANCEL 
"library-name". 

To call a function in the library, call it by its exported name, as expected.  To 
pass parameters to a native function, the types must be matched carefully.  
If the native code expects a primitive type, pass by content, if the native 
code expects a pointer, pass by reference.  The BY VALUE convention 
option picks the most appropriate form for most applications automatically. 

The following table outlines the common C type to COBOL type 
correspondence.  Elastic COBOL supports a number of synonyms for 
COMP-X or COMP-X-REV (depending on platform), useful for interacting 
with native or Java code. 

 

C type Bytes COBOL Usage 
char 1 SIGNED-BYTE, UNSIGNED-BYTE, PIC X(1) 
short 2 SIGNED-SHORT 
unsigned short 2 UNSIGNED-SHORT 
int 4 SIGNED-INTEGER 
unsigned int 4 UNSIGNED-INTEGER 
long long 8 SIGNED-LONG 
unsigned long long 8 UNSIGNED-LONG 
float 4 COMP-1 
double  8 COMP-2 
char* * PIC X(n>1) 
void* * PIC X(n>1), group 

 

For this shared library functionality to work, the shared library 
name_native.dll or libname_native.so must be present on the system.  
These libraries are not required by Elastic COBOL for anything but native 
code support and may be safely omitted from redistribution when not 
required.  The source code to these libraries is included with Elastic COBOL 
and is used for stub generation. 

 

Example Win32Beep: 

       IDENTIFICATION DIVISION. 
       PROGRAM-ID. WIN32BEEP. 
        



 

Elastic COBOL Programmer’s Guide 23 

       DATA DIVISION. 
       WORKING-STORAGE SECTION. 
 
      * 
      * The type to pass to the API function. 
      *        
       01 SoundType PIC X(4) COMP-X. 
       01 ReturnValue PIC X(4) COMP-X. 
 
      * 
      * Some possible types of beeps. 
      *        
       78 MB-ICONASTERISK PIC 999 VALUE 40. 
       78 MB-ICONEXCLAMATION PIC 999 VALUE 30. 
       78 MB-ICONHAND PIC 999 VALUE 10. 
       78 MB-ICONQUESTION PIC 999 VALUE 20. 
       78 MB-OK PIC 999 VALUE 0. 
       78 MB-SPEAKER PIC S999 VALUE -1. 
        
       PROCEDURE DIVISION. 
 
      * 
      * Load User32.DLL 
      *  
      * This step may be done instead by specifying the 
      * DLL-LINK=User32.dll program property; specifying 
      * the property will load a comma-delimited list of 
      * .DLL's before first accessing native code.  It 
      * will also automatically unload them at program 
      * exit. 
      * 
       LOAD-DLL. 
           DISPLAY "Loading DLL..." UPON SYSOUT 
 
           CALL "User32.dll" GIVING ReturnValue 
     
    IF ReturnValue = 0 THEN 
        DISPLAY "Could not load DLL, exiting." UPON SYSOUT 
        STOP RUN 
    ELSE 
        DISPLAY "DLL Loaded successfully." UPON SYSOUT 
    END-IF 
    . 
     
 
       MESSAGE-BEEP.     
           DISPLAY "Calling MessageBeep..." UPON SYSOUT 
        
           MOVE MB-ICONASTERISK TO SoundType 
      *    MOVE MB-ICONEXCLAMATION TO SoundType 
      *    MOVE MB-ICONHAND TO SoundType 
      *    MOVE MB-ICONQUESTION TO SoundType 
      *    MOVE MB-OK TO SoundType 
      *    MOVE MB-SPEAKER TO SoundType 
 
      * BY CONTENT and BY REFERENCE are _very_ important 
      * for native calls; if SoundType were passed by 
      * reference (the default), then the address of 
      * its value would be passed instead of the value 
      * itself, which is not what the Win32 API function 
      * MessageBeep is expecting.  It's expecting a 4-byte 
      * integer, satisfied by the PIC X(4) COMP-X definition 
      * above.  Native calls automatically convert the 



 

Elastic COBOL Programmer’s Guide 24 

      * data in COMP-X/BINARY/COMP-5 to the correct 
      * endian format. 
              
           CALL "MessageBeep" USING BY CONTENT SoundType  
                       GIVING ReturnValue 
      
           DISPLAY "Call complete (Status " ReturnValue ")"  
                   UPON SYSOUT 
 
           IF ReturnValue = 0 THEN 
        DISPLAY "MessageBeep Failed." UPON SYSOUT 
    ELSE 
        DISPLAY "MessageBeep Succeeded." UPON SYSOUT 
    END-IF 
    . 
 
      * Unload the DLL. 
      * 
      * This step may be skipped if the DLL-LINK=User32.dll parameter 
      * is passed. 
       
       UNLOAD-DLL. 
           CANCEL "User32.dll" 
           DISPLAY "Done." UPON SYSOUT 
           .     

Stubs 

For all systems, C source code is included to the ecobol_native and 
ecobol_user shared libraries.  This source is available so native code may 
be supported even on new systems.  Not all systems support arbitrary calls 
to native libraries, so the native call support may be directly inserted into the 
source code for this library. 

In this method, a few lines of code are added to check for the call, and then 
act on the call.  Generally, the action for the call is linked in externally when 
forming the shared library. 

The simplest method for supporting native code is to insert code into the 
sublen function in ecobol_user.c.  The argument count, argument vector, 
length of each parameter, and by reference/by content status of each 
parameter is present.  The ecobol_native library and ecobol_user library 
must both be compiled into shared libraries for the system; compiling 
ecobol_native may be skipped if already compiled for the platform.  Other 
methods are available for compatibility with other implementations, and 
ecobol_native itself may be modified if desired. 

The important point is that the final library must be sharable and follow any 
operating system specific constraints with regards to libraries capable of 
being load by the Java Native Interface. 

Native to COBOL 

The native library ecobol_call handles calling from native code to Elastic 
COBOL.  The native code must be capable of loading a shared library for 
this to function; most native languages support this capability. 



 

Elastic COBOL Programmer’s Guide 25 

Source code to a C program calling an Elastic COBOL program, including 
parameter passing, is included as calltest. 

 



 

Elastic COBOL Programmer’s Guide 26 

Chapter 3 – User Interface 

The user interface refers to the many ways a program may interact with the 
user. COBOL does not have a standard user interface definition 
methodology, and a variety of user interface mechanisms have been 
developed over time to address the requirement.  Elastic COBOL has 
support for most direct and indirect COBOL program user interface 
possibilities. 

Text 

Line Oriented 

 

The simplest text user interfaces are line oriented.  The program may 
display one or more lines of text to the user, prompt for the user response, 
and continue based on the input accepted from the response.  The process 
of displaying information and accepting the result is commonly called 
“DISPLAY/ACCEPT”.  The default device for I/O in this way is the 
CONSOLE, a device appropriate for the application execution platform.  For 
example, on Microsoft Windows and Linux with a graphical user interface 
this is a CONSOLE Window 80 characters by 24 lines.   

Elastic COBOL support of the “DISPLAY/ACCEPT” text based line oriented 
interface can use SYSOUT, SYSERR and SYSIN devices.  The program 
may DISPLAY "text" UPON SYSOUT to prompt the user.  The program may 
then ACCEPT identifier FROM SYSIN to receive the user response.  Error 
messages may be displayed by doing a DISPLAY "error" UPON SYSERR.  
The default of CONSOLE can be changed to SYSIN/SYSOUT with the 

compiler option -run:system. 

While it is simple to write a program using the “DISPLAY/ACCEPT” method, 
and is highly portable, it is generally not considered the most desirable user 
interface for any but the simplest applications. 

Screen Oriented 

Elastic COBOL supports screen oriented input/output for text screens.  Text 
screens may be graphical text screens that emulate a text environment 
under Windows, X/Windows System, or even within a browser.  Text 
screens may be displayed upon an actual text terminal on systems with 
curses support. 

Elastic COBOL will use a window created programmatically or will build one 
by default as the window is used.  The program may perform a DISPLAY 
WINDOW verb to explicitly control the creation of the main window; this 
allows it to deviate from the green-on-black, 80x25 default settings.  The 
DISPLAY WINDOW clause will function only on graphical systems, or on 



 

Elastic COBOL Programmer’s Guide 27 

text systems, it will activate the ON EXCEPTION clause of DISPLAY.  The 
DISPLAY WINDOW ON EXCEPTION clause is the proper method of 
determining if the program is running on a graphical system.  A non-
graphical system will invoke ON EXCEPTION clause, a graphical system will 
invoke any NOT ON EXCEPTION clause. 

The text screens may either be defined in the DATA DIVISION as a 
SCREEN SECTION, or they may be defined implicitly in the PROCEDURE 
DIVISION.  A proper declarative definition in the SCREEN SECTION is the 
preferred method to be used; it allows for expansion to the graphical screen 
section format later and has better cursor control for the user. 

The SCREEN SECTION defines records that correspond to displayable, 
acceptable screens.  Multiple records may be displayed and accepted from 
the same visible screen.  The record is displayed using DISPLAY record-
name.  The record is accepted using ACCEPT record-name. 

When a record is displayed, it starts at the current screen position, the 
upper-left corner by default, unless a LINE or COLUMN clause is used.  
Each elementary item within the record is displayed in turn based on the 
order of definition.  Each elementary item is displayed one after another 
unless positioning clauses intervention. 

When a record is accepted, the acceptable fields within the record are 
accepted in turn, in order of definition.  An acceptable field has a USING or 
TO clause referencing a target identifier.  The cursor may be moved 
between fields using the TAB key or the mouse when present.  Data entered 
into the fields are moved to the target identifiers automatically upon 
termination of the ACCEPT. 

The text on a text screen may have its attributes set initially in its definition, 
or modified using the SET verb.  Some common text attributes include the 
FOREGROUND-COLOR, BACKGROUND-COLOR, BOLD, etc. 

The definitions of text input/output in the SCREEN SECTION may also 
generally appear in the DISPLAY and ACCEPT verbs; see the DISPLAY and 
ACCEPT verbs for more information.  The use of “DISPLAY/ACCEPT” is 
generally discouraged since it does not maintain the separation of business 
logic from user interface, and does not allow the runtime to manage cursor 
control as extensively. 

For more information about the options available within the screen section, 
see the language reference guide. 

Graphics 

Elastic COBOL offers a graphical extension to the SCREEN SECTION text 
syntax. The GRAPHICAL SCREEN SECTION is available on all graphical 
platforms supported by Elastic COBOL and not specifically restricted to a 
single platform as other graphical COBOL solutions. 

Several graphical SCREEN SECTION samples are included with Elastic 
COBOL, including person, dream home, and gfxsample.  These samples 



 

Elastic COBOL Programmer’s Guide 28 

demonstrate many of the concepts discussed here and illustrate many of the 
functions supported in Elastic COBOL.   

The graphical screen section is still defined in the SCREEN SECTION 
declaratively or inline in the PROCEDURE DIVISION.  The result of using 
the graphical screen section is a wide range of graphical components 
presenting and retrieving user information. 

Graphical components include the following: 

Component Description 
LABEL Label for text, similar to a protected text field. 
ENTRY-FIELD Input field where user may enter data. 
PUSH-BUTTON Button which user may push (e.g., OK Button). 
CHECK_BOX Button which user may check on and off (Boolean). 
RADIO-BUTTON Grouped button from which user makes selection. 
SCROLL-BAR Scroll bar from which user may scroll to a value. 
LIST-BOX Box with a list of selectable items. 
COMBO-BOX Pull down list of items combined with entry-field. 
FRAME Graphical frame grouping items visibly for user. 
TAB-CONTROL Tabbed pane, allowing user to select tabs. 
BAR Graphical bar for drawing. 
GRID Grid for 2d data display and entry, similar to spreadsheet. 
BITMAP Image component, showing .BMS, .JPG, .GIF, .ICO 

graphics. 
TREE-VIEW Collapsible/expandable tree, showing hierarchy of data. 
WEB-BROWSER Simple HTML rendering component. 
SLIDER Similar to scroll-bar, with major and minor tick marks. 
STATUS-BAR Status bar for bottom of window. 
MENU Menu for top of window. 

 

Each component has properties that apply to it, and most components share 
a number of properties.  For example, most components have a 
FOREGROUND-COLOR property, but the radio-button has a GROUP 
property and the GRID has an X and Y property.  The components and all 
their properties are described in the appendix.  The component names are 
reserved words, the property names are reserved only within the context of 
the component. 

The graphical screen section display is still done using DISPLAY, the 
graphical screen section accept is still done with ACCEPT.  However, 
several additional verbs and verb formats are also available.  

The MODIFY verb modifies properties of a graphical component; the 
properties may also be set in the DISPLAY of an inline component.  The 
INQUIRE verb inquires the value of a property of a graphical component.  
Both MODIFY and INQUIRE are flexible in the data types expected and 
returned. 

DESTROY eliminates a graphical component; the component may be later 
re-created with another DISPLAY.  To retrieve memory used by complex 
components, the component use DESTROY. 

DISPLAY will create the component the first time it is displayed 
automatically.  Every time the same record is displayed, the properties are 
re-evaluated; this is very important to remember when the properties include 
cumulative effects, such as adding an item to a list.  The effects of the 



 

Elastic COBOL Programmer’s Guide 29 

MODIFY act immediately, and the INQUIRE verb inquires from the current 
status of the component. 

Graphics are defined in the SCREEN SECTION in much the same manner 
as the text screen section.  The existing text screen clauses still function in 
the same manner, including LINE, COLUMN, FOREGROUND-COLOR, etc.  
The graphical screen section is defined in terms of character cells, so LINE 
and COLUMN still have the same meaning; but in addition to integer co-
ordinates, fractional co-ordinates are also supported.  The Elastic COBOL 
screen section is actually always graphical, smoothly integrating the existing 
text definitions into the more modern graphical definitions; while both text 
and graphics may be used simultaneously on the same visible screen, avoid 
doing so as the simultaneous mixture will appear to be awkward.  Graphical 
components will always be shown over plain text. 

Components also have action procedures of a few different types.  A 
BEFORE PROCEDURE may be defined to act on a component before its 
use in an ACCEPT.  An AFTER PROCEDURE may be defined to act on a 
component after its use in an ACCEPT.  An EXCEPTION PROCEDURE 
may be defined to act on a component when an exception occurs in an 
ACCEPT. 

An EVENT PROCEDURE may act any time an event occurs on a 
component.  An EVENT should only be used where necessary, and event 
code should be small and quick to execute.  Information about the event 
may be obtained by defined an EVENT STATUS identifier in the SPECIAL-
NAMES.  The EVENT-STATUS group item will be filled in with information 
relevant to the event that just occurred; its contents are not defined 
afterwards.  The components document which events they issue in the 
appendix. 

There is also a DISPLAY MESSAGE BOX verb that displays simple 
message dialog boxes to the user.  This is a good mechanism for simple 
error messages to the user. 

Converting from Text Screens to Graphical Screens 

A text screen section may be converted to a graphical screen section 
through a number of fairly simple steps; the graphical screen section design 
enables a smooth migration path over time from the text screen section 
rather than a requirement for an abrupt change.   

 

 Add an explicit DISPLAY STANDARD WINDOW BACKGROUND-LOW 
statement allows the colors of the window to conform to those expected 
by the native windowing system.   

 Convert text output to LABEL components. 

 Convert text input to ENTRY-FIELD components.  The FROM, TO, 
USING, and SECURE clauses are still valid. 



 

Elastic COBOL Programmer’s Guide 30 

 Instead of a DISPLAY of spaces to clear the screen, DISPLAY BLANK 
SCREEN and destroy components explicitly using the DESTROY 
command. 

 Instead of accepting functions keys, add PUSH-BUTTON components 
with meaningful text and TERMINATION-VALUE=# where the # is the 
function key value expected.  The CRT STATUS may then be used to 
obtain the value after the ACCEPT. 

 Add a MENU to the screen with termination values in much the same 
manner as the PUSH-BUTTON components. 

A txt2gui sample included with Elastic COBOL and demonstrates these 
steps and further describes additional enhancements one at a time. 

HTML 

HTML is the user interface of choice for Servlets and CGI programs.  The 
specifics in this section relate to HTML in the context of Elastic COBOL, not 
HTML in general.  For specific HTML information, see any of the many 
HTML books or other resources available about this topic. 

An HTML display is crafted from a tag that represents the markup for a 
page.  The browser is free to interpret the display of this information.  For 
example, the bold tag "<B>" may be interpreted as a bold font, color change, 
or even ignored completely.  So, HTML output must generally be tested with 
multiple browsers to ensure its correct display. 

The HTML format is very lightweight, not requiring significant overhead in 
sending the information across the web.  There is generally no perceivable 
startup time for an HTML display, unlike an Applet, so the user response 
time can be good.  The browser is a comfortable user interface for many 
users. 

DISPLAY 

When in a Servlet or CGI program, any DISPLAY UPON SERVLET-OUT 
output is sent to the browser.  So, DISPLAY "<html>" UPON SERVLET-OUT 
sends the first line of an HTML page.  When running in the Servlet 
environment, SERVLET-OUT is the default device for output rather than 
CONSOLE, so a plain DISPLAY "<html>" will also send to the browser. 

DISPLAY UPON CONSOLE will still display to the graphical or text console 
of the server.  This usage should be avoided in Servlets. 

DISPLAY UPON SYSOUT and DISPLAY UPON SYSERR will send output 
to the sysout or syserr of the server.  These output streams are generally 
redirected by the web server to a log file, so they may safely be used for 
such a purpose.  The end user's browser will not see such messages, so 
never depend upon them for user interaction in a Servlet. 



 

Elastic COBOL Programmer’s Guide 31 

EXEC HTML 

There is also an EXEC HTML.  Any text in the program area between EXEC 
HTML and END-EXEC is sent to the browser, in the same manner that any 
text sent to a DISPLAY UPON SERVLET-OUT is done.   

Whereas a DISPLAY may alternate freely between literal text and variables 
for its output, the EXEC HTML format is much more statically oriented.  It 
may include variable output by using the Elastic COBOL recognized tag 
<hostvar name=variable-name></hostvar>; the <hostvar> tag will be 
replaced by the contents of variable-name dynamically at runtime, as if 
variable-name were to be displayed. 

Both EXEC HTML and DISPLAY to the browser may be done within the 
same program and the same transaction.  This allows EXEC HTML to 
include static content readily and DISPLAY to include dynamic content. 

DDS 

DDS, or Data Description Specification, is the method for user interface 
design originating primarily from the iSeries computers running OS/400.  
DDS definitions are characterized within an external text description file, 
COPY DDS- statements in the COBOL source code, and using virtual file 
input/output to do the presentation. 

Elastic COBOL supports DDS when used in conjunction with the Elastic 
COBOL DDS Plug-in.  The Elastic COBOL compiler will compile the DDS 
copy files and will execute the DDS displays in a platform independent 
manner.  For more information on DDS for display, see the DDS Plug-in. 

VPLUS 

 

VPLUS is screen management for the HP 3000 series of computers.  Elastic 
COBOL supports VPLUS currently only for the HP 3000 through the use of 
the original VPLUS; such screens are still tied to the original HP 3000 
environment. 

Native User Interface 

 

Elastic COBOL may also allow the use of additional, native code user 
interfaces.  These must use a CALL interface and interface using the native 
code capabilities of the platform.  See the COBOL to Native section of the 
program lifecycle chapter for more information about native calls. 



 

Elastic COBOL Programmer’s Guide 32 

Localization 

Resource Text Internationalization 

 

Elastic COBOL supports resource text internationalization.  This allows the 
one COBOL source program to refer to text by a symbolic name that is 
replaced at execution time by language- and region-sensitive text. 

So, for example, a screen may have a label that represents a greeting.  This 
greeting may be 'Good day' in English, 'Hi there' in American English, 'Guten 
Tag' in German, and 'Buenos Dias' in Spanish.  The symbolic name is 
greeting and the actual text is language and region dependent. 

There are three pieces to this internationalization: the locale, the resource 
text files and the program code.   

In addition, the Elastic COBOL runtime itself allows internationalization of 
some of its pieces.  The standard text resources are listed as well. 

Locale 

The locale is the combination of language and region.  The operating system 
and Java runtime combination will generally determine the current locale 
automatically, according to information given during the operating system 
setup. 

The locale identifier is the lowercase language identifier, then an underscore 
( _ ), then the uppercase region identifier.  For example, English in the 
United States of America is en_US, the German language in Germany is 
de_DE (German language being Deutsch in Deutschland), and French in 
France is fr_FR. 

The following program displays the current locale identifier: 

 
identification division. 
program-id. showlocale. 
 
data division. 
working-storage section. 
 
77 the-language pic x(2). 
77 the-region   pic x(2). 
 
procedure division. 
main-paragraph. 
 
    accept the-language from configuration "user.language" 
    accept the-region from configuration "user.region" 
     
    display "Locale is " the-language "_" the-region upon sysout 
    . 



 

Elastic COBOL Programmer’s Guide 33 

Resource Text Files 

A resource text file is stored in text format, one line per item.  Each item 
contains a line of name=value.  The name is the symbolic name and the 
value is the locale dependent value.  The symbolic name may include letters, 
digits and the period or full stop (.). 

A number of resource text files may exist for the same program or run unit; 
the program must specify the base name for each.  The base name is the 
name without locale information. 

The runtime searches for resource text files in a specific order, based upon 
the current locale identifier.  It will search for resource text by the most 
specific locale identifier to the least specific, general base name.  In the 
following chart, the base name is represented by base, the language by la, 
the region by RE. 

Resource Text File Search Order: 

base_la_RE.properties 

base_la_RE 

base_la.properties 

base_la.properties 

base.properties 

base 

 

For example, the base file mytext running in English in the United States will 
search for: 

 

mytext_en_US.properties 

mytext_en_US 

mytext_en.properties 

mytext_en 

mytext.properties 

mytext 

 

If the mytext file contains a reference to a label on the screen which 
represents a greeting, some mytext files which may exist would be: 

 
mytext_en_US: 
label.greeting=Hi There 
 
my_text: 
label.greeting=Good Day 
 
my_text_de_DE: 
label.greeting=Guten Tag 



 

Elastic COBOL Programmer’s Guide 34 

 
my_text_es: 
label.greeting=Buenos Dias 

 

This would make the label 'Hi There' for English speakers in the United 
States, 'Guten Tag' for German speakers in Germany, 'Buenos Dias' for 
Spanish speakers everywhere, and 'Good Day' for everyone else.  The 
symbol name for each of these is 'label.greeting'; the name of the symbol 
must be the same in the resource text file and in the resource program code, 
but it is otherwise unimportant. 

The resource text file is a program resource and it may be included in the 
deployment .jar file. 

Resource Program Code 

The program must be told the name of resource text files, and where to use 
their contents. 

The program is told the resource text file location in the SPECIAL-NAMES, 
through a RESOURCE IS "base" clause.  Any program using a resource 
should mention its usage, but it actually only has to be mentioned in a 
program before first use; the entire run unit has access to the same 
resources.  To use the resource text file mytext, include: 

 
SPECIAL-NAMES. 
    RESOURCE IS "mytext" 
    . 

 

To use the contents of the resource text file, replace the direct text with a 
reference to the symbolic resource.  For example, in the screen section 
when setting the title of a label to Good Day, it can be changed to reference 
a symbolic name 'label.greeting' instead. 

 
 05 LABEL TITLE = "Good Day". 
 

Can be changed to: 

 
 05 LABEL TITLE = RESOURCE "label.greeting". 

 

This change may be made wherever displayable text is recognized, including 
a plain DISPLAY.  So, even: 

 
  DISPLAY "Good Day" 
 

Can be changed to: 

 
  DISPLAY RESOURCE "label.greeting" 

To be sure that some meaningful text is displayed even if the resource file is 
missing, the clause WHEN OMITTED "default-text" may be included after 
the RESOURCE "name".  This default-text will never be displayed unless the 



 

Elastic COBOL Programmer’s Guide 35 

resource is missing entirely.  So to have the same label with default text for 
when the resource is missing: 

 
05 LABEL TITLE = RESOURCE "label.greeting"  
   WHEN OMITTED "Good Day". 
 

Be sure to allocate enough screen space for the different international 
resources in use.  Not all languages will have the same number of 
characters for an item, so allow some additional space. 

Standard Resource Text 

The Elastic COBOL runtime itself allows for internationalization of some 
pieces.  These pieces always have a default text, so they do not need to be 
specified, but they may be included to more fully internationalize the COBOL 
program.  These standard pieces may be included in any resource text file; 
the symbolic name is the important piece.   

Note that Symbolic names beginning with component are related to 
graphical screen section components. Calendar months and days are used 
only if Java itself does not already have a localization implementation for 
these values; in supported Java locales, these will already be defined. 

Symbolic Name Default Text 
component.push-button.ok &OK 
component.push-button.cancel &Cancel 
component.message-box.yes Yes 
component.message-box.no No 
component.message-box.ok OK 
component.message-box.cancel Cancel 
component.calendar.month.1 Jan 
component.calendar.month.2 Feb 
component.calendar.month.3 Mar 
component.calendar.month.4 Apr 
component.calendar.month.5 May 
component.calendar.month.6 Jun 
component.calendar.month.7 Jul 
component.calendar.month.8 Aug 
component.calendar.month.9 Sep 
component.calendar.month.10 Oct 
component.calendar.month.11 Nov 
component.calendar.month.12 Dec 
component.calendar.day.1 Su 
component.calendar.day.2 Mo 
component.calendar.day.3 Tu 
component.calendar.day.4 We 
component.calendar.day.5 Th 
component.calendar.day.6 Fr 
component.calendar.day.7 Sa 
component.calendar.month.previous Previous Month  
component.calendar.month.next Next Month  
component.calendar.year.previous Previous Year  
component.calendar.year.next Next Year 
component.entry-field.browse Browse... 
component.entry-field.digits Digits 
component.entry-field.dmy DDMMYY 
component.entry-field.mdy MMDDYY 



 

Elastic COBOL Programmer’s Guide 36 

Symbolic Name Default Text 
component.entry-field.ymd YYMMDD 
component.entry-field.implied Implied Decimal 
component.entry-field.decimal Decimal 
component.entry-field.number Number 
component.entry-field.full-or-empty Must Be Full or Empty 
component.entry-field.required Required Field 
component.entry-field.native Call to native language support intrinsic 

failed 
component.entry-field.digits-only This field can only contain digits (0-9) 
component.entry-field.ymd-only The field must be a valid date, in YMD order 
component.entry-field.dmy-only The field must be a valid date, in DMY order 
component.entry-field.mdy-only The field must be a valid date, in MDY order 
dialog.error_calling Error calling 
dialog.abort_program Abort Program? 
dialog.enter_to_continue Press Enter to continue: 
dialog.enter_information Enter information:  
dialog.yes Yes 
dialog.no No 
dialog.ok OK 
dialog.cancel Cancel 
dialog.open Open 
dialog.close Close 
dialog.back < Back 
dialog.next Next > 
dialog.finish Finish 
dialog.apply Apply 
dialog.help Help 
dialog.stop Stop 
dialog.break Break 
dialog.browse Browse... 
dialog.exit Exit 
dialog.retry Retry 



 

Elastic COBOL Programmer’s Guide 37 

Chapter 4 – Printing 

Printing 

Elastic COBOL printing is done through an Elastic COBOL print driver.  The 
Elastic COBOL print driver passes printing information to lower levels of 
printing support.  Elastic COBOL supports a native system print spooler, 
and, where applicable, local and remote printing along with other system 
printing capabilities. 

Elastic COBOL currently includes two print drivers, one for JDK 1.1 and 
another for JDK 1.2.  The JDK 1.1 printer driver has fewer capabilities and is 
not as fast as the JDK 1.2 printer driver. The font definitions for Java were 
changed between the versions, so it is best to target either JDK 1.1 or JDK 
1.2+ for Elastic COBOL printing.  Elastic COBOL’s preferred target is JDK 
1.2+ for printing support. 

Before any printer can be used, it must be opened.  It may be opened 
through a normal OPEN verb to a file assigned to a printer, or it may be 
opened using the P$Open call.  The printer must be opened through an 
OPEN verb in order to use text printing in the print job. 

The printer may be used for either text or graphical form printing. 

When the print job is finished, the printer must be closed.  This should be 
done using either the CLOSE verb or the P$Close call.  Printers may buffer 
data this will force the buffer to close and the printer to complete the print 
job. 

Assigning the Printer 

To assign a file to a printer, use the ASSIGN clause like the printer was any 
other file.  However, the filename is a virtual filename representing the 
printer device rather than a physical file on the computer's hard driver.  (On 
some systems without direct printing support, the printer may be mapped to 
a device file on the computer's hard drive.  This printer mapping will 
generally follow the normal standards for the system.) 

The assignment may be done in the following format: 

 
ASSIGN TO PRINT ["options"]  ; same as ASSIGN TO "line:printer:graphics/[options]" 
ASSIGN TO PRINTER ["options"]  ; same as ASSIGN TO 
"line:printer:graphics/[options]" 
ASSIGN TO PRINTER-1 ["options"] ; same as ASSIGN TO "line:printer:graphics/[options]" 
ASSIGN TO "printer:[options]" 



 

Elastic COBOL Programmer’s Guide 38 

Options may be specified from the following, with slashes (/) as separators: 

 
DRIVER=name name is the classname of a custom printer driver, 

JDK11 or JDK12. 
FONT=name default font name 
SIZE=# default font size 
COLS=# columns (default printer record size) 
ROWS=# rows (default calculated according to page and 

columns) 
CODEPAGE=name name is Java encoding name, default is operating 

system default 
ALIGNX=# text only horizontal alignment in pixels (default 

none) 
ALIGNY=# text only vertical alignment in pixels (default none) 
MARGINX=# left margin (default dependent upon other sizes) 
MARGINY=# top margin (default dependent upon other sizes) 
DPI=# dots per inch (default 600) 
BOLD font is bold 
ITALIC font is italic 
PLAIN font is neither bold nor italic 
GRAPHICS enable graphics using tag <graphics> 
GFX enable graphics using tag <gfx> 
TEXT disable graphics 
HEIGHT_ADJUST=# default .97 
PAGE_WIDTH_ADJUST=# default .93 
PAGE_HEIGHT_ADJUST=# default .91 
DIMENSION=# default .825 

Text 

Text output is done through a series of writes to the printer file after it is 
opened.  As all text is printed using graphical capabilities under current 
printer drivers, the text is rendered in a particular font.   

The text font may be explicitly set during the open, but will default to a 
meaningful value dependent upon the print file's record size.  An 80 column 
record will use a larger font than a 120 or 132 column record.  This in turn 
implies a number of lines supported for the text output. 

Text output automatically includes the carriage return and new line at the 
appropriate points when using the COBOL positioning clauses for the 
WRITE verb.  Elastic COBOL does support inline new line control as well. 

Text output will automatically eject the page when the end of page is 
reached. 

Since text output figures are dependent upon the record size, font, printer 
and paper size, it is recommended to test the printer output against any 
desired printers. 

 



 

Elastic COBOL Programmer’s Guide 39 

Forms 

Form printing is done through the P$ commands.  These are CALL 
statements implemented within the Elastic COBOL runtime itself, available 
on all platforms.  No new syntax is required to support this printing. 

Form printing may be done on the same page as text printing or it may be 
done entirely separately.  If opened using the P$Open command, then text 
printing is not available.  Form printing also includes direct text printing 
where all information is specified. 

The P$ commands use positioning co-ordinates for most operations.  These 
may be specified in a variety of units, including 'I' for inches, 'M' for metric 
centimeters, 'C' for character units, 'T' or 'D' for device units, and 'P' for 
pixels.  Default units may be set for the printer rather than specifying the 
units in each individual command. 

The P$ commands allow inquiry as to certain printer or printer driver 
parameters.  This allows the program to discover at runtime the attributes of 
a printer and change the output accordingly. 

The P$ commands allow geometric shapes to be drawn directly using 
primitive drawing commands.  It also allows a more general connector 
concept, allowing the printer driver to connect the dots with the appropriate 
line segments automatically.  As connectors are added to the page, they are 
not rendered until the page is complete; then, only the appropriate 
connections are made between the connectors allowing for complex form 
generation. 

The P$ commands themselves are fully documented in the call library 
appendix, but summarized here as to function. 

Dialog Commands 

P$CLEARDIALOG Clear printer dialog values to default values. 
P$DISABLEDIALOG Disable the printer dialog from being displayed 

automatically to the user upon next open. 
P$DISPLAYDIALOG Display the printer dialog to the user.  This is 

automatically done by an OPEN if enable dialog is 
true; this routine should generally not be called 
directly. 

P$ENABLEDIALOG Enable the printer dialog to be displayed to the user 
automatically upon next open.  The default is that 
the printer dialog is enabled. 

P$GETDIALOG Get printer dialog attributes. 
P$SETDIALOG Set printer dialog attributes. 

 



 

Elastic COBOL Programmer’s Guide 40 

Drawing Commands 

P$COMPONENTOUT Output a graphical Component to the printer.  This is 
generally used for outputting barcodes generated 
from C$BARCODE. 

P$CONNECTOR Place a connector on the current printer page.  
Connectors are suitable for creating lines forms, 
where line drawing art may have been used 
previously. 

P$CONNECTORTHICKNESS Set the thickness of connectors on the printed page. 
P$DRAWBITMAP Draw a bitmap image on the current printer page. 
P$DRAWBOX Draw a box or rectangle on the current printer page. 
P$DRAWLINE Draw a line on the current printer page between two 

co-ordinates. 
P$DRAWOVAL Draw an oval or circle on the current printer page. 
P$GETPOSITION Get the current printer drawing position from the 

printer driver. 
P$LINETO Draw a line from the current drawing position to the 

given co-ordinates on the current printer page. 
P$MOVETO Move the current printer drawing position to the 

given co-ordinates on the current printer page. 
P$SETBOXSHADE Set the printer shading color. 
P$SETPAINTMODE Set the current printer drawing mode. 
P$SETPEN Set the printer drawing pen's attributes. 
P$SETPOSITION Set the current printer drawing position. 

  

Text Commands 

P$CLEARFONT Set the printer font back to the default font. 
P$GETTEXTEXTENT Get the dimensional extent of a piece of text, as 

rendered in the current font. 
P$GETTEXTMETRICS Get attributes of the current printer font. 
P$GETTEXTPOSITION Get the current printer text drawing position. 
P$SETDEFAULTALIGNMENT Set the default printer alignment for text. 
P$SETFONT Set the current printer font. 
P$SETLINEEXTENDMODE Set the vertical spacing to use when outputting a 

carriage-return (without linefeed) to the printer.  This 
defaults to zero (0). 

P$SETTABSTOPS Set the printer tab positions. 
P$SETTEXTCOLOR Set the current printer text color. 
P$SETTEXTPOSITION Set the current printer text position. 
P$TEXTOUT Output text to the printer. 

Drawing and Text Commands 

 
P$SETDEFAULTMODE Set the default printer mode, absolute or relative 

positioning. 
P$SETDEFAULTUNITS Set the default unit of printer measurement. 
P$SETBOTTOMMARGIN Set the printer bottom margin. 
P$SETLEFTMARGIN Set the printer left margin for this page. 
P$SETTOPMARGIN Set the printer top margin for succeeding pages. 

Control Commands 

P$CLOSE Close the printer driver, automatically ejecting the 



 

Elastic COBOL Programmer’s Guide 41 

current page. 
P$COMMAND The P$COMMAND passes an arbitrary command 

string to the COBOL printer driver.  This is used for 
supporting unusual commands or commands that 
would not be available in most printer drivers. 

P$DISABLEESCAPESEQUENCES Disable escape sequences in text output. 
P$EJECT Eject the current page from the printer, feeding in 

the next page. 
P$ENABLEESCAPESEQUENCES Enable escape sequences in text output. 
P$GETDEVICECAPABILITIES Get printer device capabilities. 
P$GETHANDLE Get the handle number of the current printer. 
P$OPEN Open the printer driver, making a connection to the 

printer.  This may automatically show a printer dialog 
box, depending on settings and version of Java. 

P$SETHANDLE Set the current printer to the given printer handle 
number. 

Barcode 

Elastic COBOL supports interfacing with third-part barcode components.  
These barcode components are useful mainly for printer output in Elastic 
COBOL, so they are covered here within the scope of printing.  The third-
party runtime library must be in the CLASSPATH at runtime in order to be 
found successfully. 

As there is no standard Java interface to barcodes, a barcode driver must 
exist for the barcode to be used.  Some barcode systems interface using 
fonts or other transparent mechanisms; if the barcode system works with 
Heirloom with no changes, then its usage is beyond the scope of this 
chapter. 

A barcode driver is included with Elastic COBOL for Dragon Technology's 
JBarcode bean.  The barcode implementation itself is separate from Elastic 
COBOL and must be purchased directly from the vendor The vendor 
information is available as of time of publication at the following URL: 
http://www.dragontechnology.com/barcode/ 

The barcode itself is generated as either an image or a graphical component 
using the c$Barcode command to interface with the barcode driver.  This 
image or graphical component may then be output to the printer using the 
p$ComponentOut call command. 

Generally, the c$Barcode command takes a number of properties to set, and 
then based upon those properties will return a rendered image or component 
suitable for output.  The quality and content of the output is highly dependent 
upon the barcode implementation. 

An example of generating a barcode for area code 95118 with visible text is: 

 
77 graphical-object object reference. 
 
Call "c$Barcode" using 
 "value" "95118" 
 "show-text-bool" "Y" 
 "check-digit-bool" "Y" 
 "angle-degrees-double" 90 
 returning graphical-object 

http://www.dragontechnology.com/barcode/


 

Elastic COBOL Programmer’s Guide 42 

 
call "p$ComponentOut" using graphical-object 5 6 

 

The barcode will be rendered using each set of two parameters as a 
property name and a value.  The value of the barcode is '95118'; the text will 
be shown, a check digit included, and the text will be rendered at a 90 
degree angle.  This information is sufficient to render the barcode in this 
case.  Other barcode drivers may require additional information. 

The graphical-object variable is the container for the reference to the 
rendered component.  After the call, it will either be NULL for an invalid 
value, or a valid reference.  The CALL itself may fail, and that failure may be 
visible as a user dialog in this case; an ON EXCEPTION clause may be 
coded as for all calls to determine failure programmatically. 

The p$ComponentOut command outputs the component image to the 
printer.  It may be done multiple times for each component, if desired. 

Advanced 

Custom Elastic COBOL Printer Driver 

Elastic COBOL supports printers through its own printer driver before being 
passed to the lower level.  This allows additional features like text mode 
support and the P$ printer functions.  The implementing classname may be 
specified as the DRIVER= parameter in the printer's assignment filename.  
All printing, text or form, will be routed through the printer driver.  This 
interface could be implemented for plain text printers through custom serial 
or parallel ports, receipt printers, etc. 

 

package com.heirloomcomputing.ecs.api; 
 
/** 
 * Generic Printing Functions 
 * 
 * Any class that implements this may be used as an Elastic COBOL printer. 
*/ 
public interface GenericPrinter 
{ 
    // P$DISPLAYDIALOG RETURN CODES 
    public static final int PD_RETURN_OK=0; 
    public static final int PD_RETURN_CANCELLED=1; 
    public static final int PD_RETURN_ERROR=2; 
     
    // Pitch Values 
    public static final int PITCH_NORMAL_VALUE=0; 
    public static final int PITCH_EXPANDED_VALUE=1; 
    public static final int PITCH_COMPRESSED_VALUE=2; 
 
    // Connectors 
     
    public static final int CONNECT_LEFT=1; 
    public static final int CONNECT_RIGHT=2; 
    public static final int CONNECT_UP=4; 



 

Elastic COBOL Programmer’s Guide 43 

    public static final int CONNECT_DOWN=8; 
    public static final int CONNECT_HORIZONTAL=CONNECT_LEFT|CONNECT_RIGHT; 
    public static final int CONNECT_VERTICAL=CONNECT_UP|CONNECT_DOWN; 
    public static final int CONNECT_ALL=CONNECT_HORIZONTAL|CONNECT_VERTICAL; 
 
    public static final int CONNECT_SHADE=16; 
    public static final int CONNECT_SINGLE=32; 
    public static final int CONNECT_DOUBLE=64; 
    public static final int CONNECT_ROUND=128; 
    public static final int 
CONNECT_TYPE=CONNECT_SINGLE|CONNECT_DOUBLE|CONNECT_ROUND; 
 
    // ------ 
    // DIALOG 
    // ------ 
 
    /** 
     * Set the dialog to initial unset default values. 
     */ 
    public void clearDialog(); 
     
    /** 
     * Display Dialog Box to user. 
     * 
     * @return true for success, false for failure, RuntimeException for error 
     */ 
    public Boolean displayDialog(); 
     
    /** 
     * Get Dialog attributes. 
     * 
     * @param attribute the Dialog attribute. 
     * @return value of attribute 
     */ 
    public String getDialog(String attribute); 
     
    /** 
     * Set Dialog attributes. 
     * 
     * @param attribute The Dialog attribute. 
     * @param value The value of the attribute. 
     */ 
    public void setDialog(String attribute,String value); 
     
    /** 
     * Return a component related to the printing; this is suitable ONLY 
     * for usage with obtaining an image, and it is NOT guaranteed to 
     * be anything other than null for a COBOLPrinter, especially on 
     * later edition servers. 
     */ 
    public Component getComponent(); 
     
    // ------- 
    // DRAWING 
    // ------- 
 
    /** 
     * @return the scale in horizontal pixels for the unit name. 
     */ 
    public double getScaleX(String unitName); 
     
    /** 
     * @return the scale in vertical pixels for the unit name. 



 

Elastic COBOL Programmer’s Guide 44 

     */ 
    public double getScaleY(String unitName); 
     
    /** 
     * Draw a Bitmap. 
     */ 
    public void draw(Image image,double xpos,double ypos,double width,double height); 
     
    /** 
     * Draw a Component 
     */ 
    public void draw(Component component,double xpos,double ypos,double width,double 
height); 
     
    /** 
     * Draw a Box, shaded or 3d. 
     */ 
    public void drawBox(double xpos,double ypos,double width,double height,boolean 
shade,boolean _3d,boolean raised); 
     
    /** 
     * Draw a Rounded Box, optionally shaded. 
     */ 
    public void drawBox(double xpos,double ypos,double width,double height,boolean 
shade,int arcWidth,int arcHeight); 
     
    /** 
     * Draw an Oval, shaded or 3d. 
     */ 
    public void drawOval(double xpos,double ypos,double width,double height,boolean shade); 
     
    /** 
     * Draw a partial Oval, optionally shaded. 
     */ 
    public void drawArc(double xpos,double ypos,double width,double height,boolean 
shade,int startAngle,int endAngle); 
     
    /** 
     * Draw a line; set the next from to the current to. 
     */ 
    public void drawLine(double x1,double y1,double x2,double y2); 
     
    /** 
     * Set the initial drawing location for the next drawLineTo; does 
     * not render anything. 
     */      
    public void drawLineFrom(double x1,double y1); 
     
    /** 
     * Draw a line to the given coordinates, from the last drawn line. 
     */ 
    public void drawLineTo(double x1,double y1); 
     
    /** 
     * Set shading color. 
     */ 
    public void setShadeColor(Color shade); 
     
    /** 
     * Get shading color; 
     */ 
    public Color getShadeColor();  
     



 

Elastic COBOL Programmer’s Guide 45 

    /** 
     * Set the pen attributes. 
     * 
     * @param penStyle; from PEN_STYLE_SOLID (0), PEN_STYLE_DASH (1), 
PEN_STYLE_DOT (2), PEN_STYLE_DASH_DOT (3), PEN_STYLE_DASH_DOT_DOT (4), 
PEN_STYLE_NULL (5) 
     */ 
    public void setPen(int penStyle,double penWidth,Color penColor);  
     
    /** 
     * @return ending X position of previous print 
     */ 
    public double getPositionX(); 
     
    /** 
     * @return ending Y position of previous print 
     */ 
    public double getPositionY(); 
     
    /** 
     * @param set position X of next print 
     */ 
    public void setPositionX(double xpos); 
     
    /** 
     * @param set position Y of next print 
     */ 
    public void setPositionY(double ypos); 
     
    // ----------------- 
    // BASIC PRINTER OPS 
    // ----------------- 
     
    /** 
     * Eject the current page. 
     */ 
    public void eject(); 
     
    /** 
     * Open the printer according to filename. 
     * 
     * @param rawMode true if should open in rawMode, false if cooked 
     * @param filename 
     * @return true for success, false for failure (cancelled by user) 
     */ 
    public Boolean open(Boolean enableDialog,boolean rawMode,String filename); 
     
    /** 
     * Close the printer access. 
     */ 
    public void close(); 
     
    // ----------------- 
    // TEXT MANIPULATION 
    // ----------------- 
     
    /** 
     * Clear the font to default. 
     */ 
    public void clearFont(); 
     
    /** 
     * @param bottom is false if top of text, true if bottom 



 

Elastic COBOL Programmer’s Guide 46 

     * @return ending X position of previous print 
     */ 
    public double getTextPositionX(Boolean bottom); 
     
    /** 
     * @param bottom is false if top of text, true if bottom 
     * @return ending Y position of previous print 
     */ 
    public double getTextPositionY(Boolean bottom); 
     
    /** 
     * Set the current font. 
     * 
     * @param f current font. 
     */ 
    public void setFont(Font f,boolean underline,boolean strikeOut,boolean doubleStrike); 
    public Boolean isFontUnderline(); 
    public Boolean isFontStrikeOut(); 
     
    /** 
     * Get the current font. 
     */ 
    public Font getFont(); 
     
    /** 
     * Get the current font metrics. 
     */ 
    public FontMetrics getFontMetrics(); 
     
    /** 
     * Set the amount of space between two overwritten lines. 
     */ 
    public void setLineExtend(double extend); 

     
    /** 
     * Set the pitch of the font. 
     */ 
    public void setPitch(int pitchType); 
     
    /** 
     * Set the tab stop increment. 
     */ 
    public void setTabStop(double tabStops); 
     
    /** 
     * Get the text color. 
     */ 
    public Color getTextColor();  
     
    /** 
     * Set the text color. 
     */ 
    public void setTextColor(Color textColor); 
     
    /** 
     * Set the text position x. 
     * 
     * @param bottom is true if bottom, false if top 
     */ 
    public void setTextPositionX(double xpos,boolean bottom); 
     
    /** 
     * Set the text position y. 



 

Elastic COBOL Programmer’s Guide 47 

     * 
     * @param bottom is true if bottom, false if top 
     */ 
    public void setTextPositionY(double ypos,boolean bottom); 
 
    /** 
     * Output text at position, with a box or shade. 
     */ 
    public void textOut(String text,double xpos,double ypos,boolean box,boolean shade); 
     
    /** 
     * Write plain text, with possible escapes if enabled; this MAY cause 
     * a page eject and movement to the next page. 
     * 
     * @return true if page ejected 
     */ 
    public Boolean write(String text); 
     
    /** 
     * Get renderable text extend in width and height as Dimension. 
     * 
     * @return physical dimension of text 
     */ 
    public Dimension getTextExtent(String text); 
     
    /** 
     * Set the left margin. 
     */ 
    public void setLeftMargin(double leftMargin); 
     
    /** 
     * Get the left margin. 
     */ 
    public double getLeftMargin(); 
     
    /** 
     * Set the top margin. 
     */ 
    public void setTopMargin(double topMargin); 
     
    /** 
     * Get the top margin. 
     */ 
    public double getTopMargin(); 
     
    /** 
     * Set the bottom margin. 
     */ 
    public void setBottomMargin(double bottomMargin); 
     
    /** 
     * Get the bottom margin. 
     */ 
    public double getBottomMargin(); 
     
    // --------------- 
    // PRINTER CONTROL 
    // --------------- 
     
    /** 
     * Set device modes. (ChangeDeviceMode) 
     */ 
    public void setDeviceMode(String attrib,String value); 



 

Elastic COBOL Programmer’s Guide 48 

 
    /** 
     * Get the value of a device attribute. 
     * 
     * @return value of attrib 
     */ 
    public String getDeviceCapability(String attrib); 
     
    /** 
     * Enable or disable escape sequences. 
     * 
     * @state true if escape if sequences are to be enabled. 
     */ 
    public void setEscapeSequences(Boolean state); 
 
    /** 
     * Get printer info attribute. 
     * 
     * @return value of attribute. 
     */ 
    public String getPrinterInfo(String attrib); 

     
    // Connectors 
     
    /** 
     * Set the connector thickness, in pixels away from the center. 
     */ 
    public void setConnectorThickness(int thickness); 
     
   /** 
    * Set a connector of the given type on the page; the page 
    * is responsible for connecting connectors appropriately. 
    */ 
   public void setConnector(double xpos,double ypos,int type);     
     
   /** 
    * XORMode 
    * 
    * This painting mode for drawing to the printer has the attribute 
    * such that drawing the object twice will return the graphics to 
    * the original state. 
    */ 
    public void setXORMode(Color c); 
     
    /** 
     * PaintMode 
     * 
     * This is the normal painting mode for drawing to the printer. 
     */ 
    public void setPaintMode(); 
     
    /** 
     * Command 
     * 
     * Send arbitrary text commands to the Elastic COBOL printer driver; this may 
     * be interpreted in any manner by the Elastic COBOL printer driver. 
     */ 
    public String command(String command); 
} 



 

Elastic COBOL Programmer’s Guide 49 

Custom Elastic COBOL Barcode Driver 

Elastic COBOL supports a generic barcode architecture, allowing different 
Barcode drivers to be used from the standard "C$Barcode" generation 
function.  A custom barcode driver may be selected by specifying the 
"DRIVER" property and the classname of the custom driver.  Any barcode 
driver must implement the following interface: 

 
package com.heirloomcomputing.ecs.api; 
 
/** 
 * Generic Barcode Functions 
 * 
 * This class must be implemented by any Barcode implementation to 
 * be usable from C$BARCODE. 
 * 
 * The method of usage from C$BARCODE is: 
 *  Construct the implementation.. 
 *  Set the properties. 
 *  Call getComponent(), returning the barcode component. 
 */ 
public interface GenericBarcode 
{ 
    /** 
     * The DRIVER property is never passed in setProperty; rather, 
     * it is the property that specifies the implementation of 
     * the GenericBarcode interface. 
     */ 
    public static final String PROPERTY_DRIVER="DRIVER"; 
     
    /** 
     * Wherever there is a match to one of the listed types, recognize 
     * the listed type in addition to any other proprietary type names 
     * supported. 
     * 
     * Code128 
     * Code39 
     * Code39_2to1 
     * ExtendedCode39 
     * ExtendedCode39_2to1   
     * Interleaved25 
     * Interleaved25_2to1 
     * Codebar 
     * Codebar_2to1 
     * MSI 
     */ 
    public static final String PROPERTY_TYPE="TYPE"; 
     
    /** 
     * The value or code of the barcode. 
     */ 
    public static final String PROPERTY_VALUE="VALUE"; 
     
    /** 
     * Whether or not a check digit should be included. 
     */ 
    public static final String PROPERTY_CHECK_DIGIT_BOOL="CHECK_DIGIT_BOOL"; 
     
    /** 
     * Whether or not the text of the barcode value should be included. 



 

Elastic COBOL Programmer’s Guide 50 

     */ 
    public static final String PROPERTY_SHOW_TEXT_BOOL="SHOW_TEXT_BOOL"; 
     
    /** 
     * The narrowest bar width. 
     */ 
    public static final String 
PROPERTY_NARROWEST_BAR_WIDTH_INT="NARROWEST_BAR_WIDTH_INT"; 
     
    /** 
     * The angle of the barcode printing in degrees. 
     */ 
    public static final String 
PROPERTY_ANGLE_DEGREES_DOUBLE="ANGLE_DEGREES_DOUBLE"; 
     
    /** 
     * The height of the barcode. 
     */ 
    public static final String 
PROPERTY_BARCODE_HEIGHT_INT="BARCODE_HEIGHT_INT"; 
     
    /** 
     * The background color of the barcode. 
     */ 
    public static final String 
PROPERTY_BACKGROUND_COLOR="BACKGROUND_COLOR"; 
     
    /** 
     * The background color within the barcode. 
     */ 
    public static final String 
PROPERTY_BARCODE_BACKGROUND_COLOR="BARCODE_BACKGROUND_COLOR"; 
     
    /** 
     * Set a property on the barcode. 
     */ 
    public void setProperty(String property,Object value); 
     
    /** 
     * Return the final barcode object, reflecting properties as 
     * set by setProperty. 
     * 
     * This will generally be either a Component or an Image. 
     */ 
    public Object getObject(); 
} 
 



 

Elastic COBOL Programmer’s Guide 51 

Chapter 5 – Data Access 

Datatype Storage 

Datatype storage is the manner in which datatypes are stored to memory, 
and affects the PICTURE and the USAGE of the variable. 

This is not important for all programs, but can be important when redefining 
across memory and when storing the memory to permanent storage (such 
as in the file section).  It can also be important when passing data to native 
code programs that cannot automatically determine the storage format used. 

Because of the differences in data storage compatibility between vendors, 
when accessing data it is important that the datatype storage conventions 
match wherever there is an observable impact.   

Some datatype conventions, such as the AcuCOBOL convention, have 
COMP-1 and COMP-2 with different general categories than most other 
COBOL compilers, so it can be very important to have a good match of data.  
Fortunately, Elastic COBOL supports most datatype conventions and has 
options to support various combinations.  The USAGE clause documentation 
lists all available USAGE combinations. 

When compiling code originally written for Micro Focus, compile using the 
Micro Focus data compatibility option.  When compiling code originally 
written for AcuCOBOL, compile using the AcuCOBOL data compatibility 
option, etc. 

Character Datatypes 

The character datatypes represent data non-numeric in form, generally 
expressed as PIC X(n). 

Character data has the simplest storage.  The character 'A' is stored as an 
'A', the character 'B' is stored as a 'B', etc.  ASCII is the most common 
storage format, but Unicode and other encoding are also available. 

The data is stored the same on all platforms and is the safest way to pass 
data from one COBOL implementation to another. 

Fixed Point Numeric Datatypes 

The fixed-point numeric datatypes represent data numeric in form, generally 
expressed as PIC 9(n) or PIC 9(n)V9(m), with a fixed number of whole and 
fractional digits. 

The internal storage of fixed-point numeric differs considerably according to 
usage, data compatibility, and even platform.  As COBOL did not 
standardize the internal storage of data, the different COBOL vendors do not 



 

Elastic COBOL Programmer’s Guide 52 

have compatible storage implementations.  Elastic COBOL accommodates 
this through the usage of compiler switches (data settings in the IDE).



 

Elastic COBOL Programmer’s Guide 53 

The various large categories of fixed-point numeric are the following: 

Zoned Decimal 

Binary 

Packed Decimal 

Zoned Decimal 

Zoned Decimal is the simplest of the numeric storage formats, where each 
digit of the number occupies a byte of memory.  The implied decimal point is 
only implied, not stored, so it occupies no memory.  Generally, the sign is 
overlaid with the trailing digit, but the sign storage clause can modify this 
behavior. 

The positive overlaid digit, the negative overlaid digit, and the unsigned 
digits of the numeric body may have different storage values.  For many of 
the data compatibilities, the positive overlaid digit and the unsigned digit 
have the same storage.  Sometimes, other data compatibility switches may 
have been used for compiling elsewhere, so knowledge of these data 
formats may be useful. 

When stored with the sign separate, USAGE DISPLAY is the most standard 
way of passing data from one COBOL implementation to another. 

In RM/COBOL compatibility, COMP is COMP-D-2 compatible. 

Elastic COBOL, Micro Focus, IBM ASCII data compatibility 

 0 1 2 3 4 5 6 7 8 9 

Unsigned 0 1 2 3 4 5 6 7 8 9 
Positive 0 1 2 3 4 5 6 7 8 9 
Negative p q r s t u v w x y 

AcuCOBOL data compatibility 

 0 1 2 3 4 5 6 7 8 9 

Unsigned 0 1 2 3 4 5 6 7 8 9 
Positive 0 1 2 3 4 5 6 7 8 9 
Negative I J K L M N O P Q R 

HP COBOL-II, RM/COBOL data compatibility 

 0 1 2 3 4 5 6 7 8 9 

Unsigned 0 1 2 3 4 5 6 7 8 9 
Positive { A B C D E F G H I 
Negative } J K L M N O P Q R 

IBM EBCDIC data compatibility 

 0 1 2 3 4 5 6 7 8 9 

Unsigned xf0 xf1 xf2 xf3 xf4 xf5 xf6 xf7 xf8 xf9 

Positive xc0 xc1 xc2 xc3 xc4 xc5 xc6 xc7 xc8 xc9 
Negative xd0 xd1 xd2 xd3 xd4 xd5 xd6 xd7 xd8 xd9 

COMP-D data compatibility (sign separate) 

 0 1 2 3 4 5 6 7 8 9 

ALL x00 x01 x02 x03 x04 x05 x06 x07 x08 x09 



 

Elastic COBOL Programmer’s Guide 54 

COMP-D-2 data compatibility (sign separate) 

 0 1 2 3 4 5 6 7 8 9 

ALL x00 x01 x02 x03 x04 x05 x06 x07 x08 x09 

Binary 

Binary numeric storage uses base two storage to store the value in the 
minimum space available.  Size error detection may occur at either the 
maximum storage capability or the picture; it defaults to the picture 
representation, but may be modified using the -dt:truncbin compiler option. 

Binary may be stored in big-endian or little-endian format.  The storage 
format for some usage is fixed, for others it depends upon the platform. 
BINARY by default is big-endian.  BINARY-REV by default is little-endian. 

In Micro Focus, HP, and AcuCOBOL modes, COMP is a BINARY type. 

In AcuCOBOL and RM/COBOL data compatibility modes, COMP-5 and 
COMP-N have opposite meanings on little-endian platforms such as 
Windows; in Micro Focus, COMP-5 has the opposite meaning on little-
endian platforms such as Windows. 

COMP-4 by default is platform independent BINARY, same as BINARY.  
COMP-5 is a platform dependent binary in some data compatibility modes; 
in Elastic COBOL data compatibility, it is the same as BINARY. 

COMP-X allows its binary usage to be defined in terms of the minimum 
space to hold the number of PIC 9's specified, or the number of bytes 
expressed by PIC X's.  COMP-X is platform independent ordering.  COMP-N 
is like COMP-X, but platform dependent ordering in some data compatibility 
modes; in Elastic COBOL data compatibility, it is the same as COMP-X. 

COMP-S is always a short, two byte binary format. 

The binary types are good especially for data transfer with Java and native 
applications in C. 

Packed Decimal 

Packed Decimal is a base 10 storage format, where two digits occupy one 
byte, one nibble or half a byte per digit.  On average, half as many bytes are 
required for packed decimal storage as for zoned decimal storage.  The 
packed decimal usage vary in storing padding bytes, order of the nibbles 
within the byte, and whether or not unsigned numbers will still possess a 
sign nibble area. 

When stored, the sign nibble is always separate from the numeric digit 
nibble, never overlaid. 

COMP is a packed decimal storage format in Elastic COBOL data 
compatibility. 

COMP-6 is a packed decimal storage format that stores sign only when 
necessary. 



 

Elastic COBOL Programmer’s Guide 55 

Floating Point Numeric Datatypes 

The floating-point numeric datatypes represent data numeric in form, but 
without a fixed number of whole and fractional digits. 

Elastic COBOL stores its floating point numbers in IEEE format, or the 
reverse byte order version of IEEE.  COMP-1 and COMP-2 are single and 
double precision IEEE, while COMP-1-REV and COMP-2-REV are single 
and double precision reversed IEEE. 

COMP-1-MVS and COMP-2-MVS are available for storing floating point 
numbers in the original MVS floating point format.  These types are most 
useful for data transfer with old mainframe data and should not be used for 
other purposes. 

Floating-point numbers are not precise and should never be used for storing 
monetary data.  They are used primarily for passing data to floating point 
types in Java or native C code, and for scientific calculations.  They may be 
used for approximating functions. 

File Storage 

For all files, the data stored in the file is dependent upon the storage of data 
in memory.  The file commands take the internal storage of the data and 
make it persistent, storing it to disk, or return it from disk to the internal 
storage of memory.  So, when attempting to read or write an existing file, 
first be sure that the datatype format matches.  

Where the file format differs between COBOL implementations, Elastic 
COBOL supports the concept of a file protocol to specify how to access the 
file.  The file may be specified as a Micro Focus compatible file, an 
AcuCOBOL compatible file, etc.  This file protocol is specified using the 
protocol name then a colon then the filename itself.  For example, assigning 
to a Micro Focus file called myfile would be an assign to "mf:myfile". 

As certain vendors support multiple filesystems, Elastic COBOL does not 
necessarily support all filesystems.  Check for each file type to see which 
types are supported. 

Filenames on different platforms have different default directory separators; 
the separator character on Windows is the backslash (\) character, while in 
Unix it is the slash (/) character.  The SPECIAL-NAMES allows the implied 
directory separator to be specified using the following syntax: 

"x" IS FILE CHARACTER 

Whenever the character x is found in a filename, it is replaced with the 
actual directory separator for the platform.  This is used most to make 
explicit the implicit directory separator character used in the program code 
assignments.  For example, when a typical assign is ASSIGN TO 
"mydir/myfile", then "/" IS FILE CHARACTER would make explicit that the '/' 
character is the separator; then it would be replaced by a '\' character in 
Windows automatically. 



 

Elastic COBOL Programmer’s Guide 56 

Sequential 

Sequential files are declared as ORGANIZATION SEQUENTIAL.  This is the 
default for files, and so is the organization used when no organization is 
explicitly specified.  Sequential files may only be read, updated, and written 
in order.  There is no random access to the file allowed. 

Sequential files may either be fixed length or variable length.  Fixed length 
files are the result of file definitions where there is only one record, or 
multiple records of the same length.  Variable length files are the result of 
file definitions where multiple records are defined, not all of the same length. 

Fixed length sequential files have no additional header information or meta-
information within the file.  Because of this, they are the same between most 
COBOL vendors and are well suited to data transfer between COBOL 
implementations. 

Variable length sequential files may have header or meta-information within 
the file.  This is to indicate the length of each record.  Because of this, not all 
COBOL implementations store variable length sequential files in the exact 
same manner. 

Elastic COBOL supports its own format, the Micro Focus sequential file 
format using the "mf:" protocol, and the AcuCOBOL sequential file format 
using the "acu:" protocol. 

In addition, the RM/COBOL fixed length sequential file format is supported 
as its format is the same as the Elastic COBOL format.  RM/COBOL variable 
length sequential file format is not supported. 

Sequential and line sequential files may have protocols beyond simple 
storage.  These additional protocols may specify virtual devices rather than 
actual files on the system.  This allows items such as the system clipboard, 
or TCP/IP sockets to be used as files.  These file protocols are documented 
in the language reference section on I/O. 

Line Sequential 

Line sequential files are declared as ORGANIZATION LINE SEQUENTIAL.  
This is for text file support, and matches the text file support expected by the 
system complete with line separators to separate each line.  All line 
sequential files are implicitly variable length. 

Whitespace at the end of lines is removed upon writing, and implied when 
reading. 

As this corresponds to a text file, only write data that is in USAGE DISPLAY 
format.  If numeric, the sign should be separate, and not overlaid. 

Relative 

Relative files are declared as ORGANIZATION RELATIVE. 



 

Elastic COBOL Programmer’s Guide 57 

In relative files, each record in the file may be accessed randomly by record 
number. 

Elastic COBOL supports its own format, the Micro Focus relative file format 
using the "mf:" protocol, and the AcuCOBOL relative file format using the 
"acu:" protocol. 

Indexed 

Indexed files are declared as ORGANIZATION INDEXED. 

In indexed files, each record in the file may be accessed randomly by key. 

An indexed file may consist of one or more files.  Generally, either one file is 
used for both the keys and data, or one file for keys and a separate file for 
data. 

Elastic COBOL supports its own format, the Micro Focus IDXFORMAT"3" 
file format using the "mf:" protocol and the AcuCOBOL Vision 4 indexed file 
format using the "acu:" protocol.  Remote file access to AcuConnect is 
supported using the AcuConnect syntax.  C-ISAM access is supported on 
some platforms in conjunction with native ISAM drivers. 

XML 

ORGANIZATION XML files are always stored in XML format.  XML format is 
a standard, text-based format composed of hierarchical tags and narrative 
text.  The Elastic COBOL extensions for XML allow the reading of XML data. 

Reading XML data requires parsing the XML data and extracting its content, 
so use the ORGANIZATION XML to ease this burden.  Writing XML data is 
currently done using LINE SEQUENTIAL files.  Reading XML requires 
handling unknown types, and this is handled transparently when using 
ORGANIZATION XML.  Writing XML uses only known data from the 
program so can be handled directly from LINE SEQUENTIAL. 

XML Background 

XML is a descendent of SGML, like HTML, but more rigorously implemented 
than HTML without the complexities of SGML.  XML is human-readable, with 
all data stored in text format.  XML is machine-readable, with enforceable 
structure. 

XML has nothing but custom tags, tags invented for a particular purpose.  
For a card catalog, the tags may include title, publisher, and description.  For 
a customer list, the data may include the customer name, the date of first 
and last purchase, and the average purchase price.  Each of these data 
items is tagged.  New information may be added later without breaking the 
existing format.  Some basic validation of structure may be built into the file 
itself, enforced automatically upon read. 

An XML application is not a program, but a set of tags and attributes, 
rigorously defined.  One XML application is XHTML, a more rigorous version 



 

Elastic COBOL Programmer’s Guide 58 

of HTML.  Other XML applications exist for a large number of different 
industries and needs.  An XML application may already exist for the industry 
or need in question, or a new application may be developed by defining the 
tags and attributes necessary. 

Structure of XML 

An XML file looks like the following narrative document: 

<?xml version="1.0" encoding="US-ASCII" standalone="yes"> 

<biography> 

<person scientist="yes">Albert Einstein</person> discovered relativity. 

</biography> 

or the following hierarchical document. 

<?xml version="1.0" encoding="US-ASCII" standalone="yes"> 

<customer-database> 

 <customer> 

  <first-name>Jack</first-name> 

  <last-name>Smith</last-name> 

  <address-1>123 Elm St.</address-1> 

  <city>Springfield</city> 

  <state>IL</state> 

  <zip>12345</zip> 

 </customer> 

 <customer> 

  <first-name>Jill</first-name> 

  <last-name>White</last-name> 

  <address-1>234 Maple St.</address-1> 

  <city>Springfield</city> 

  <state>IL</state> 

  <zip>12345</zip> 

 </customer> 

</customer-database> 

The first line of the file indicates with a processing instruction, starting with 
an angle bracket then question mark, that this is an XML file, and the 
encoding for the file, and whether this file stands alone.  This XML 
processing line is not absolutely required for all files, but it should always be 
present. 

In both cases, the tags indicated by <> characters markup the document 
with a description of the content.  The content is between the tags, such as 
Albert Einstein or Springfield.  An attribute is a name/value pair within a tag, 
such as scientist = "yes". 



 

Elastic COBOL Programmer’s Guide 59 

Unlike HTML, each tag must have an end tag, beginning with </, or be 
marked as both a start and end tag by including the / at the end of tag, like 
<hr/>.  Each attribute must have a value, and the value must be in either 
single- or double-quotes; it cannot be left unquoted.  Each document must 
have a root element, a single tag which surrounds the document data.  (In 
XHTML, for instance, this is <html> surrounding all the HTML.) 

Also unlike HTML, each tag and attribute is case-sensitive.  A <person> is 
different from a <Person>. 

The white space between tags in an XML file is generally ignored, but some 
parsers can recognize it. 

Parsing XML 

Parsing XML is the reading of XML, separating the structure from the 
contents, determining that the document is well-formed and possibly 
validating the contents against a DTD, a document type definition.  A well-
formed document follows all the rules of XML.  A valid document follows all 
the rules of an XML application.  (A document not well-formed cannot be 
valid.)  A DTD can help ensure that an invalid document is recognized as 
such, but it cannot ensure that the data itself is valid.  That is, it can ensure 
that a person has a birth-date child element, but it cannot ensure that the 
birth-date is not in the future when it's expected to be in the past; that is the 
job of the program handling the data. 

The current generation of parses can handle namespaces.  Namespaces 
are the separation of XML application domains into separate spaces from 
one another.  For example, this allows a single document to  have a 
customer:description and a product:description without conflict.  The 
customer: and product: are namespaces. 

XML in Elastic COBOL 

XML in Elastic COBOL is defined as a file with ORGANIZATION XML.  An 
XML file is largely like a record sequential file in usage; the only access 
mode currently supported is SEQUENTIAL. 

The tag, such as <person> is the basic structural element driving the 
remainder of the parsing.  The tag has zero or more attributes, zero or more 
characters of data until the end-tag is reached, and the parser may 
recognize that it is at a certain location in the file. 

The tag structure of the application and the attributes should be known 
before reading or writing the file.  The values of the attributes and contents 
of the tags is the unknown that the READ can read.   

Not all tags used in a document must be referenced from the program code.  
This allows a future revision of the document to include new tags without 
breaking the older programs; the new tags will simply be ignored.  This 
allows a customer database to add a field giving the customer birth-date 
without interfering with the billing program; both a birthday card program and 
billing can run off the same file. 



 

Elastic COBOL Programmer’s Guide 60 

Any tags used must in the correct hierarchical order.  That is, if a person has 
an attribute of birth-date, the attribute must be a child of person.  If a person 
has character content describing the person, that the description must be a 
child of person.  The hierarchical order is important; filling in pieces 
irrelevant to the program is not important. 

An XML file does not directly have the concept of a record.  Elastic COBOL 
forms XML structures into records on the fly, initializing record items which 
are not defined within a particular record.  Elastic COBOL will form a new 
record when a second level (level below the document root) is defined.  
Elastic COBOL will also form a new record when a tag is repeated within a 
record.  Generally, data which a COBOL program would consider handling 
will be well-formed for record handling. 

When reading an XML file, Elastic COBOL tracks the tags in order.  If 
<a><b><c val=1></c><c val=2></c> is found, then two records are found; 
one is <a><b><c val=1>, the second is <a><b><c val=2>.  The higher levels 
of hierarchy are preserved; when a repetition is found, it is treated as a 
separate record.  By treating the file in this fashion, normal COBOL records 
are generated; the COBOL code does not need to do separate tracking of 
the higher-level structural elements. 

If records are found in the file that does not match the structure mentioned in 
the COBOL program, they are skipped.  If attributes are found that do not 
match the structure mentioned in the COBOL program, they are skipped.  By 
only reading in the data which is mentioned, the code is protected from 
changes in the file or file format. 

An XML data record is highly dependent upon its structure, not its byte 
positions.  Certain words are used to mark the structural elements of the 
XML record.  The hierarchical structure of the record is used to map to the 
hierarchical structure of the XML data. 

The name of each data item is important and it must match the XML name 
exactly; use the IDENTIFIED BY clause to name it exactly.  Remember that 
XML is case sensitive and dashes and underscores are considered separate 
characters. 

Because the naming and record order is considered the important attribute 
of an XML record, do not redefine or implicitly redefine an XML record 
(multiple level 01).  It is acceptable to make the content-data a group item 
containing data which is redefined. 

The IDENTIFIED BY clause may include IDENTIFIED BY ANY to indicate 
that any text will match. Which tag was actually found will be returned in the 
content-name or attribute-name property. 

Three forms are available for each of the data items available for an XML 
tag, a quick form, a short form and a long form.  Any may be used, even 
within a single record; the long provides more information. 

An example of the tag format is given below: 

Quick Format 

05 TAG [IDENTIFIED BY "tag-name"] PIC X(n) VALUE content-data. 



 

Elastic COBOL Programmer’s Guide 61 

Short format 

05 TAG [IDENTIFIED BY "tag-name"] [PIC X(n) VALUE]. 
 10 PCDATA CONTENT PIC X(n) VALUE content-data. 
 10 ATTRIBUTE-NAME ATTRIBUTE  [IDENTIFIED BY "attribute-name"]  
          PIC X(n) VALUE attribute-data. 
 10 LOCATOR-ITEM LOCATOR PIC X(n) VALUE locator-system. 

Long format 

05 TAG [IDENTIFIED BY {ANY | "tag-name"}] [PIC X(n) VALUE]. 
 10 PCDATA CONTENT. 
 15 PCDATA-NAME CONTENT-NAME PIC X(n) VALUE content-name. 
  15 PCDATA-OFFSET-ITEM CONTENT-OFFSET PIC 9(n)  
                        VALUE content-offset. 
  15 PCDATA-LENGTH-ITEM CONTENT-LENGTH PIC 9(n)   
                        VALUE content-length. 
  15 PCDATA-DATA-ITEM CONTENT-DATA PIC X(n)  
                         VALUE content-data. 
 10 ATTR-NAME ATTRIBUTE [IDENTIFIED BY {ANY | "attribute-name"}] 
  15 ATTR-NAME ATTRIBUTE-NAME PIC X(n)  
                         VALUE attribute-name. 
  15 ATTR-URI ATTRIBUTE-URI PIC X(n)  
                         VALUE attribute-uri. 
  15 ATTR-LOCAL ATTRIBUTE-LOCAL PIC X(n)  
                         VALUE attribute-local. 
  15 ATTR-QNAME ATTRIBUTE-QNAME PIC X(n)  
                        VALUE attribute-qname. 
  15 ATTR-TYPE ATTRIBUTE-TYPE PIC X(8) VALUE attribute-type. 
  15 ATTR-DATA ATTRIBUTE-DATA PIC X(n) VALUE attribute-data. 
  15 ATTR-LENGTH ATTRIBUTE-LENGTH PIC 9(n)  
                         VALUE attribute-length. 
10 LOCATOR-GROUP LOCATOR. 
  15 LOC-PUBLIC LOCATOR-PUBLIC VALUE locator-public. 
  15 LOC-SYSTEM LOCATOR-SYSTEM VALUE locator-system. 
  15 LOC-LINE LOCATOR-LINE VALUE locator-line. 
  15 LOC-COL LOCATOR-COLUMN VALUE locator-column. 
 

In each tag, everything in a record declared at a higher level than CONTENT 
is content information.  Everything in a record declared at a higher level than 
ATTRIBUTE is attribute information.  Everything in a record declared at a 
higher level than LOCATOR is locator information.  Only one (1) LOCATOR 
per XML record is allowed. 

CONTENT 

The content in a tag is PCDATA, parsed character data.  It is all the data 
between the start tag and the end tag, the actual content of the tag.  It has 
any escape entities already replaced (such as '&gt;' transformed into the 
greater than sign '>'). 

Because PCDATA is the most common information desired, all other 
information for a tag may be omitted; in such a case, the tag itself holds the 
data.  This is sufficient for many simple XML parsing jobs.  The following 
data record shows a simple XML record for reading names from a customer 
database. 

 
01 CUSTOMER-DATABASE IDENTIFIED BY "customer-database". 
    05 CUSTOMER-NAME IDENTIFIED BY "name" PIC X(40). 

This could read three records from the following XML file: 



 

Elastic COBOL Programmer’s Guide 62 

 

<?xml version="1.0"> 

<customer-database> 

 <name>George Washington</name> 

 <name>John Adams</name> 

 <name>Thomas Jefferson</name> 

</customer-database> 

When using IDENTIFIED BY ANY for the tag, use CONTENT-NAME to 
discover the name of the tag.  This allows a more compact record 
description, more flexible in its input; this places more of the input burden on 
the user program. 

Attributes 

Attributes are items present within a tag.  The attributes give information not 
within the narrative content.  The attribute information is always a simple 
value within quotes.  No structure is implied for the attribute itself; it merely 
describes the tag and content. 

The attribute name must match that given in the text exactly.  The attribute 
name is case sensitive.  Because of this, the IDENTIFIED BY clause is used 
to give the exact name, including upper- or lower-case characters, 
underscores, hyphens, etc.  IDENTIFIED BY ANY is acceptable for an 
attribute.  IDENTIFIED BY "*x" where x is a number starting at one (1) is 
also acceptable. 

The ATTRIBUTE-VALUE is the value of the attribute.  The ATTRIBUTE-
VALUE-LENGTH is the actual length of the value; the PIC X allocated for 
ATTRIBUTE-VALUE must be long enough to hold the value.  If an attribute 
is a list of tokens, then the tokens will be concatenated into a single piece of 
text with each token separated by a single space. 

URI, the uniform resource identifier, is the namespace URI.  The LOCAL-
NAME is the local-name portion.  The URI and LOCAL-NAME are only 
meaningful when namespaces are enabled. 

QNAME is the fully qualified XML 1.0 name, the name as used before 
namespaces were conceived. 

TYPE is the type of the attribute, always from one of the following: CDATA, 
ID, IDREF, IDREFS, NMTOKEN, NMTOKENS, ENTITY, ENTITIES, or 
NOTATION.  CDATA is the default for an undeclared attribute. 

When using IDENTIFIED BY ANY for the attribute, use ATTRIBUTE-NAME 
to discover the name of the attribute.  This allows a more compact record 
description, more flexible in its input; this places more of the input burden on 
the program.  A numbered tag may also be used, when IDENTIFIED BY "*#" 
where # is an integer value greater than or equal to zero.  For example, 
IDENTIFIED BY "*3" will be the third attribute, whatever its name; its name 
will be discoverable through the ATTRIBUTE-NAME item. 



 

Elastic COBOL Programmer’s Guide 63 

Locator 

The Locator is not guaranteed to be implemented by an XML parser.  The 
Locator provides information as to where the tag or data was located.  If not 
implemented by the XML parser, the data will be set to initialized data, 
SPACES or ZEROES.  This information is generally not important for most 
uses.  It should only be used for optional error reporting.  Only one (1) 
LOCATOR per XML record is allowed. 

 

LOCATOR-GROUP LOCATOR. 

PUBLIC-ID LOCATOR-PUBLIC VALUE SPACES. 

SYSTEM-ID LOCATOR-SYSTEM VALUE SPACES. 

LINE-NUMBER LOCATOR-LINE VALUE ZEROES. 

COLUMN-NUMBER LOCATOR-COLUMN VALUE ZEROES. 

LOCATOR-ITEM LOCATOR PIC X(n) VALUE system-id. 

ASSIGN TO for XML 

The ASSIGN TO for XML is given by the following: 

ASSIGN TO "xml:[xml-driver:][xml-feature…]xml-url" 

The ASSIGN TO for an XML file specifies that the file is an XML file, what 
driver to use for the XML parser, and what features to enable or disable.   

The driver name is the class name of an XML parser to use.  A system 
default will be used if driver is not given. 

 The xml-url portion may be a local filename or a remote http: reference; it 
may be anything the driver accepts for a reader. 

 Feature is any of the following: 

Xml-Feature Property Name Description 
xml: XML designator optional, implied for XML organization 
nons: Namespaces: namespaces are disabled 
ns: Namespaces: namespaces are enabled (def) 
nonsp: Namespace-

prefixes: 
namespaces with prefix attributes are disabled 
(def) 

nsp: Namespace-
prefixes: 

namespaces with prefix attributes are enabled 

noval: Validation: parser is not validating (no validate messages, def) 
val: Validation: parser is validating (give validate messages) 
nows: Whitespace ignore ignorable whitespace (def) 
ws: Whitespace report ignorable whitespace 
noskip: Skipped-Entity ignore skipped-entity messages (def) 
skip: Skipped-Entity give skipped-entity messages 
nopc: Processing-Code ignore processing-code messages (def) 
pc: Processing-Code give processing-code messages 
noprefix: start- and end-prefix ignore prefix messages (def) 
prefix: start- and end-prefix give prefix messages 
elem: element processing give element processing messages 
driver=name: XML parser driver specify SAX2 JAXP XML driver explicitly 



 

Elastic COBOL Programmer’s Guide 64 

XML File Error Information 

XML allows up to three file status identifiers to be defined.  The first is the 
standard two-digit file status code.  The second and third are optional 
messages. 

Not all file status codes are always returned.  Some XML specific file codes 
are returned only when specifically enabled in the ASSIGN.  The default set 
match what most COBOL programs expect. 

General format 

FILE STATUS numeric-error alphanumeric-file-status-2 alphanumeric-file-
status-3 

FILE  

STATUS 

DESCRIPTION FILE-

STATUS-2  

FILE-STATUS-3 Notes 

00  OK (No Error)    Standard return 
05  Open Optional 

Missing 
   Standard return, only 

on OPEN 
07  Non-Reel 

requested, 
irrelevant for 
XML 

   Standard return, 
reel/unit 

10  End Of File 
(EndDocument) 

   Standard return, only 
on READ 

14  StartElement uri local-name / 
qname 

 only if element 

15  EndElement uri local-name / 
qname 

 only if element: 

16  StartPrefixMapp
ing 

prefix uri  only if prefix 

17  EndPrefixMappi
ng 

prefix   only if prefix: 

18  ProcessingInstr
uction 

target data  only if pc 

21  SkippedEntity name   only if skip: 
11  Sax-warning message   

20  Sax-error message   

20  Parse error message locator-message  

30  Sax-fatal-error message locator-message  std, error permanent 
35  Open Non-Opt 

Missing 
message  message   std, only on OPEN 

37  Open Mode N/S message   std, if cannot set 
features, load driver, 
etc. 

39  Open Attr 
Mismatch 

message   

41  Already open    std, only on OPEN 
42  Already closed    std, only on CLOSE 

46  Read already 
errored 

   std, only on READ 

47  Read not input message   std, only on READ 

XML Deployment 

XML parsing in Elastic COBOL requires an external parser.  This allows 
companies concentrating exclusively on XML to produce the best possible 
XML parsers that are then usable directly from Elastic COBOL.  One is 



 

Elastic COBOL Programmer’s Guide 65 

supplied with Elastic COBOL for development, so a development 
environment requires nothing additional.   

However, deployment may need an XML parser included if JAXP (Java 
API's for XML Processing) is not supported directly by the desired Java 
Virtual Machine (JVM).  JAXP is an optional package for JDK 1.1.8 and 
higher.  JAXP is included in Java 2 Standard Edition 1.4 and higher, and 
Java 2 Enterprise Edition 1.3 and higher.  If not deploying to a JVM that 
already includes JAXP, be sure to deploy it with the application. 

The current version of JAXP is available from Sun at: 

http://java.sun.com/xml/xml_jaxp.html 

ORGANIZATION XML files also take an additional processing thread.  
Usually, this is not important for usage, but it can help parsing times 
dramatically on multi-processor systems.  Also, some environments may 
forbid multiple threads; this would forbid using ORGANIZATION XML files.  
The XML thread is always a child thread of the COBOL thread doing the 
OPEN verb. 

Transaction 

ORGANIZATION TRANSACTION files are for OS/400 DDS compatibility.  
They reference a terminal display and allow user input/output.  Support for 
these files is dependent upon the DDS Plug-in.  Elastic COBOL may attempt 
to compile ORGANIZATION TRANSACTION files, but the runtime support 
for them will only be present when the DDS Plug-in is present.  See the DDS 
Plug-in for more information. 

Remote File Access 

Elastic COBOL supports the use of files from remote servers.  The Elastic 
COBOL remote file server, NFS, AcuConnect and OS/400 remote files are 
all available. 

Remote File Server 

The Elastic COBOL remote file server may be started from the IDE for 
testing.  For deployment to a server by itself, it is started as the Java 
program com.heirloomcomputing.ecs.exec.fileserver; it is included within the 
Elastic COBOL runtime (ecobol.jar) and the runtime must be included for 
such deployment. 

The directory where the remote file server is started determines the current 
directory for the remote file access.  A filename with no directory information 
will be in the current directory of the file server. 

To access files from the remote file server, the Elastic COBOL program 
should include the protocol 'remote:' in the file assignment.  So, the file 
assigned to "remote:myhost.com:myfile" will use the file named myfile 

http://java.sun.com/xml/xml_jaxp.html


 

Elastic COBOL Programmer’s Guide 66 

located on the remote file server myhost.com.  The file server must be 
running at the time to successfully open the file. 

Locking 

As a standard locking mechanism had not been defined for Java through 
Java 1.3, Elastic COBOL defines its own locking mechanism.  In this 
mechanism, the two levels of file locking and record locking are handled 
separately. 

File Locking 

File locking is done through a renaming scheme.  The basic filename, 
defined in the ASSIGN, represents the file in its inactive, totally unopened 
state.  In order to open a file for the first time, the system must be able to 
rename it appropriately; after that, only other processes trying to open the 
file in compatible ways will find the renamed file. 

The renamed file always starts with a prefix and underscore before the base 
filename.  The following prefixes are currently used: 

Prefix Description 
no_ NO OTHER 
aoi_ ALL OTHER (Opened originally for input) 
aoo_ ALL OTHER (Opened originally for other than input) 
roi_ READ ONLY (Opened originally for input) 
roo_ READ ONLY (Opened originally for other than input) 

If a process leaves behind an unclosed, locked file, it may be renamed to the 
base filename to unlock it. 

This locking scheme is sufficient to support COBOL 2002 locking 
conventions.  Use only the locking modes absolutely required as future 
alternative locking systems using native locking conventions may not 
support all COBOL 2002 modes. 

Elastic COBOL's file locking will lock out all other processes attempting to 
open the base filename unless they explicitly recognize the locking scheme. 

Record Locking 

Record locking is performed through the use of a record server.  The record 
server must be running at the time the program needs a lock; if not, the 
program will prompt for the record server to be started. 

The record server is located in the Elastic COBOL runtime (ecobol.jar), and 
is started as the program com.heirloomcomputing.ecs.exec.RecordServer.  
It may be run continuously in the background and it serves all Elastic 
COBOL programs on the machine. 

Elastic COBOL record locks are currently not compatible with other locks on 
the system, so may only be safely used to lock between Elastic COBOL 
programs.  For locking between languages and machines, SQL is the 
preferred method. 



 

Elastic COBOL Programmer’s Guide 67 

SQL 

Overview 

SQL is not another file type, like sequential or indexed.  Rather, it is the 
Structured Query Language, an access method capable of accessing 
relational databases and other database-like storage. 

SQL statements themselves are embedded within the COBOL source code.  
The SQL statements themselves are not COBOL statements, but rather 
work with the COBOL code to manipulate the database. 

Each of these SQL statements begins with EXEC SQL and ends with END-
EXEC.  The SQL statement itself is between the EXEC and END-EXEC.  
The SQL statements may not be streamed together; each must have its own 
EXEC and END-EXEC. 

Some COBOL systems use a pre-compiler to compile the COBOL with SQL 
code into plain COBOL code, where the COBOL code may have certain 
calls out to system functions to perform the SQL operations.  Rather than 
using a separate pre-compiler, Elastic COBOL supports embedded SQL 
directly, compiling it to support JDBC code. 

JDBC 

As Elastic COBOL compiles the SQL code directly into JDBC, it relies on 
JDBC drivers for the communication with the database.  JDBC is Java 
Database Connectivity, a standard mechanism by which programs executing 
in the Java environment may connect to any database that has a JDBC 
driver.  For programmers coming from other environments, JDBC is very 
similar in purpose to ODBC. 

The JDBC driver does the work of converting from the standardized, 
external form of data access to the proprietary, internal form expected by the 
database.  To access any database from Elastic COBOL, a JDBC driver is 
required. 

This JDBC driver will generally be included with the database or available 
from the database vendor, but there are also third-party drivers available for 
certain databases.  JDBC drivers are available for all major databases. 

The JDBC driver will be a Java executable, meaning it will come in .class, 
.jar or .zip format.  The driver must be in the CLASSPATH to be found and 
used.  The driver may have additional requirements particular to the 
implementation; any such requirements will be found with the driver 
documentation. 

Just as databases vary in capability, so do the JDBC drivers that access 
them.  Elastic COBOL's SQL access is only as good as the database and 
JDBC driver used to handle the access.  If requiring a particular capability, 



 

Elastic COBOL Programmer’s Guide 68 

be sure that both the SQL database itself and the JDBC driver supports the 
required action. 

SQL Connection 

To use SQL with a database, the program must have a connection to the 
database.  Just like files must be opened and closed, the program must 
connect to and disconnect from the database. 

In some COBOL systems, only one SQL database is permissible, so no 
explicit connection statement is required.  However, the flexibility of Elastic 
COBOL also demands that an explicit connection be made using the SQL 
CONNECT statement; the database should also be properly disconnected at 
the end using the SQL DISCONNECT statement. 

The format of the CONNECT statement is: 

 EXEC SQL 

  CONNECT TO job-url 

  [AS connection-name] 

  [DRIVER job-driver-name] 

  [USER user] 

  [PASSWORD|USING password] 

 END-EXEC 

A successful connect does require at minimum the jdbc-url, the driver name, 
and any user name or password required by the database.  The information 
on the jdbc-url formation and driver name is available with the driver 
documentation. 

The jdbc-url is the Internet name of the database; it should be in quotes.  In 
the driver documentation, it will begin with jdbc:, but Elastic COBOL will 
insert that portion automatically if missing.  After the jdbc:, it will have a 
driver identification protocol name, a colon (:), and any other information 
required by the driver such as the database name, location, port, etc.   

In Java 2, the jdbc-url may also be a Java Data Source name; this is 
particularly useful with Enterprise JavaBean environments where a 
connection already exists in the environment, and it must simply be named.  
To use a data source, use 'ds:name' with name as the named resource. 

The jdbc-driver-name is the classname of the JDBC driver.  This is the name 
used to activate the driver.  In the JDBC driver documentation, this will be 
the name in quotes documented as Class.forName("driver").  It will often be 
a packaged name using the reverse Internet domain, such as 
'COM.ibm.db2.jdbc.net.DB2Driver'. 

The connection_name is an identifier for later use by other SQL statements; 
it is optional. 

The USER and PASSWORD are the user name and password required for 
access to the database.  These may be omitted for public databases with no 
user name or password.  USING is a synonym for PASSWORD. 



 

Elastic COBOL Programmer’s Guide 69 

To disconnect from the database, use the disconnect command as follows: 

 
EXEC SQL 
 DISCONNECT 
END-EXEC 

Host Variables 

Elastic COBOL supports access to host variables, the COBOL source code 
variables encapsulating the embedded SQL program.  This syntax is the 
same as that supported by other embedded SQL implementations. 

These host variables are accessed using a colon (:) followed by the name of 
the variable.  To check the null indicator for a variable, add another colon (:) 
and name of the indicator variable. 

Host variables should be uniquely defined for best compatibility, but Elastic 
COBOL supports dot (.) syntax for accessing qualified variable names as 
well.  Where a COBOL program would use 'ALPHA OF BETA' to qualify a 
name, the SQL host variable would be ':BETA.ALPHA'.  The colon signifies 
the host variable, the beta is the group name, and the alpha is the 
elementary item within the group. 

SQL response codes 

The result of a SQL operation may be detected by program code using the 
SQLCODE or SQLSTATE variables.  The SQLCODE has been superceded 
by SQLSTATE over time, so SQLSTATE should be used in new code 
wherever possible. 

SQLCODE may be defined as a signed numeric of at least three digits.  It 
has only three defined values, indicating success (0), warning (100) and 
failure (<0). 

SQLSTATE may be defined as an alphanumeric of at least five characters.  
It has the major class of the state in the first two characters with a sub-
classification of the state in the next three characters. 

Neither SQLCODE nor SQLSTATE is required; they will simply be 
inaccessible if not defined. 

The actual meanings for the values of both SQLCODE and SQLSTATE are 
defined by the database vendor.  Most states are passed directly from the 
database back to the program.  However, there are some standard states 
defined for SQLSTATE which apply to most databases.  These states are 
listed below. 

A SQLCA file is not included with Elastic COBOL to prevent conflicts with 
existing files, but one may be created for use by EXEC SQL INCLUDE 
SQLCA END-EXEC.  Its preferred contents are: 

 
 01 SQLCODE PIC S999. 
 01 SQLSTATE PIC X(5). 

 



 

Elastic COBOL Programmer’s Guide 70 

Chapter 6 – Communication 

MQSeries 

IBM’s Message Queuing system (MQSeries) is available for several 
platforms operating platforms.  Elastic COBOL MQSeries support requires 
MQSeries from IBM including the MQSeries Java support.  Elastic COBOL 
provides a COBOL interface across all Java platforms by mapping the 
COBOL interface to the Java interface. Elastic COBOL only supports version 
1 MQSeries structures. 

Two versions of the MQSeries objects. com.ibm.mqbind.* objects are only 
for server programs and com.ibm.mq.* objects are for client programs.  The 
objects names are the same, but the objects are not interchangeable. 

For the purpose of the Elastic COBOL documentation, the default directory 
is assumed to be used. MQSeries COBOL copy files are located in 
x:\mqm\tools\COBOL\copybook, where x:\ is the MQSeries drive in 
Windows.  MQSeries copy files are located in similar locations for other 
platforms.  Refer to MQSeries documentation for more detailed information 
concerning location and general operation of MQSeries. 

Elastic COBOL support for MQSeries uses parameters according to 
parameter positions, not according to byte offset and length.  It is important 
to always use the actual MQSeries copy files to pass information. 

Application Setup 

MQSERVER must be specified as an invocation switch. 

Example: 

java application_name MQSERVER=true  

Local Client Setup 

Invocation parameters are Elastic COBOL parameters, included on the 
command line below. 

Example: 

java appletname  MQ_HOSTNAME=tcp.ip.addr.x 
CHANNEL=CHANNEL_name                     
MQ_PORT=port# 

Applet Client Setup 

All of the class files used in the applet must be included in subdirectories 
under the html subdirectory: 

  ibm.mq.client 



 

Elastic COBOL Programmer’s Guide 71 

classes must be located under html as com.heirloomcomputing.ecs.exec 

  ...html/ibm/mq/client 

The program must be compiled using the -html option only ONCE to create 
the html file for invoking the applet.   

appletname.html must be edited to add invocation parameters. 

 

Example: 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN"> 
<HTML> 
<HEAD> 
<TITLE>Java Applet amq0put1</TITLE> 
</HEAD> 
 
<BODY> 
<H1>amq0put1</H1> 
<APPLET CODE="sqAMQABC.class" CODEBASE="." NAME="amqABC  
WIDTH=600 HEIGHT=420 ALIGN=MIDDLE HSPACE=1 VSPACE=1> 
<PARAM NAME="WHEN-GENERATED" VALUE="19980818163651000000000"> 
<PARAM NAME="ECOBOL-MAJOR" VALUE="2"> 
<PARAM NAME="ECOBOL-MINOR" VALUE="0"> 
<PARAM NAME="MQ_HOSTNAME" VALUE="tcp.ip.addr.x"> 
<PARAM NAME="MQ_PORT" VALUE=port#> 
<PARAM NAME="MQ_CHANNEL" VALUE="ChannelName"> 
<PARAM NAME="MQ_USER_ID" VALUE="userid"> 
<PARAM NAME="MQ_PASSWORD" VALUE="password "> 
 
</APPLET> 
<P> 
</BODY> 
</HTML> 

 

The HTML example illustrated was created using: 

 

ecobol amqABC.cbl -html –app sqABC 

 

MQ_HOSTNAME, MQ_PORT, MQ_CHANNEL, MQ_USER_ID, and 
MQ_PASSWORD are invocation parameters.  The skeleton was then 
modified to add the appropriate invocation parameters. 

MQSeries API's 

MQBACK - Back out changes  

Data definition: 

HCONN    PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface:  

CALL 'MQBACK' USING HCONN, COMPCODE, REASON. 



 

Elastic COBOL Programmer’s Guide 72 

MQBEGIN - Begin unit of work  

Data definition: 

HCONN    PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface:  

CALL 'MQCMIT' USING HCONN, COMPCODE, REASON.  

MQCLOSE - Close object  

Data definition:  

HCONN    PIC S9(9) BINARY 
HOBJ     PIC S9(9) BINARY 
OPTIONS  PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface: 

CALL 'MQCLOSE' USING HCONN, HOBJ, OPTIONS, COMPCODE, REASON.  

MQCMIT - Commit changes 

Data definition:   

HCONN    PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface:  

CALL 'MQCMIT' USING HCONN, COMPCODE, REASON. 

MQCONN - Connect queue manager 

Data definition:  

Required for clients: 

MQ_HOSTNAME 
MQ_PORT 
MQ_CHANNEL       
MQ_USER_ID 
MQ_PASSWORD 

Required for Applications and Clients: 

NAME     PIC X(48) 
HCONN    PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface:  

CALL 'MQCONN' USING NAME, HCONN, COMPCODE, REASON.  

MQCONNX - Connect queue manager (extended)  

Data definition:     

NAME     PIC X(48) 
HCONN    PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface: 



 

Elastic COBOL Programmer’s Guide 73 

CALL 'MQCONNX' USING NAME, HCONN, COMPCODE, REASON.  

MQDISC - Disconnect queue manager  

Data definition: 

HCONN    PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface: 

CALL 'MQDISC' USING HCONN, COMPCODE, REASON. 

MQGET - Get message  

Data definition:  

HCONN    PIC S9(9) BINARY 
HOBJ     PIC S9(9) BINARY 
MSGDESC  COPY CMQMDV 
BUFFERLENGTH PIC S9(9) BINARY 
BUFFER   PIC X(n) 
DATALENGTH PIC S9(9) BINARY 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface:  

CALL 'MQGET' USING HCONN, HOBJ, MSGDESC, 
GETMSGOPTS, BUFFERLENGTH, BUFFERm DATALENGTH, COMPCODE, REASON. 

MQINQ - Inquire about object attributes  

Data definition: 

HCONN    PIC S9(9) BINARY 
HOBJ     PIC S9(9) BINARY 
SELECTORCOUNT    PIC S9(9) BINARY 
01 SELECTORS-TABLE. 
02 SELECTORS PIC S9(9) BINARY OCCURS n TIMES. 
INTATTRCOUNT PIC S9(9) BINARY 
01 INTATTRS-TABLE 
02 INTATTRS PIC S9(9) BINARY OCCURS n TIMES. 
CHARATTRLENGTH PIC S9(9) BINARY. 
CHARATTRS PIC X(n). 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface: 

CALL 'MQINQ' USING HCONN, HOBJ, SELECTORCOUNT,  
SELECTORS-TABLE, INTATTRCOUNT,INTATTRS-TABLE, 
CHARATTRLENGTH, CHARATTRS, COMPCODE, REASON. 

MQOPEN - Open object  

Data definition:   

HCONN    PIC S9(9) BINARY 
OBJDESC. COPY CMQODV. 
OPTIONS PIC S9(9) BINARY. 
HOBJ PIC S9(9) BINARY. 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface: 

CALL 'MQOPEN' USING HCONN, OBJDESC, OPTIONS, HOBJ, COMPCODE,REASON. 



 

Elastic COBOL Programmer’s Guide 74 

MQPUT - Put message  

Data definition: 

HCONN    PIC S9(9) BINARY 
HOBJ     PIC S9(9) BINARY 
MSGDESC  COPY CMQMDV. 
01 PUTMSGOPTS. COPY CMQPMOV. 
BUFFERLENGTH PIC S9(9) BINARY 
BUFFER   PIC X(n) 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface: 

CALL 'MQPUT' USING HCONN, HOBJ, MSGDESC, 
PUTMSGOPTS, BUFFERLENGTH, BUFFER, COMPCODE, REASON. 

MQPUT1 - Put one message  

Data definition:        

HCONN    PIC S9(9) BINARY 
OBJDESC. COPY CMQODV. 
MSGDESC  COPY CMQMDV. 
PUTMSGOPTS. COPY CMQPMOV. 
BUFFERLENGTH PIC S9(9) BINARY 
BUFFER   PIC X(n) 
COMPCODE PIC S9(9) BINARY 
REASON   PIC S9(9) BINARY 

Call interface: 

CALL 'MQPUT1' USING HCONN, OBJDESC, MSGDESC, 
PUTMSGOPTS, BUFFERLENGTH, BUFFER, COMPCODE, REASON.  

MQSET - Set object attributes 

Data definition: 

HCONN    PIC S9(9) BINARY 
HOBJ     PIC S9(9) BINARY 
SELECTORCOUNT    PIC S9(9) BINARY 
 01 SELECTORS-TABLE. 
    02 SELECTORS PIC S9(9) BINARY OCCURS n TIMES. 
       INTATTRCOUNT PIC S9(9) BINARY 
  01 INTATTRS-TABLE 
     02 INTATTRS PIC S9(9) BINARY OCCURS n TIMES. 
        CHARATTRLENGTH PIC S9(9) BINARY. 
        CHARATTRS PIC X(n). 
        COMPCODE PIC S9(9) BINARY 
        REASON   PIC S9(9) BINARY 

Call interface: 

CALL 'MQSET' USING HCONN, HOBJ, SELECTORCOUNT,  
SELECTORS-TABLE, INTATTRCOUNT, INTATTRS-TABLE, CHARATTRLENGTH, 
CHARATTRS, COMPCODE, REASON. 

If MQSeries has been installed in the default directory, copy files for 
MQSeries are located in x:\mqm\tools\COBOL\copybook, where x: is the 
default drive. 



 

Elastic COBOL Programmer’s Guide 75 

CICS Client 

Requirements 

  Workstation products 

Windows operating system. 

IBM Communications Server for Windows 

CICS Client 

Client/Server Programming IBM Document Number SC33-1435-02 

CICS Client information refer to the following 
http://www.software.ibm.com/ts/cics/platforms/clients/cli204s7.html 

 

Jgate -- Java Gateway for CICS. For information and download a copy of 
Jgate  

http://www.software.ibm.com/ts/cics/platforms/internet/cicsgw4j/announce/jgann201.
html 

and   

http://www.software.ibm.com/ts/cics/platforms/internet/tgw30/ctgann30.html 

OS390 products 

VTAM 

 CICS 

 COBOL 

 CEE 

CICS Overview 

CICS/390 is a server that enables CICS clients to invoke CICS transactions 
and receive the transaction output.  

 

http://www.software.ibm.com/ts/cics/platforms/clients/cli204s7.html
http://www.software.ibm.com/ts/cics/platforms/internet/cicsgw4j/announce/jgann201.html
http://www.software.ibm.com/ts/cics/platforms/internet/cicsgw4j/announce/jgann201.html
http://www.software.ibm.com/ts/cics/platforms/internet/tgw30/ctgann30.html


 

Elastic COBOL Programmer’s Guide 76 

 
Figure 1. is a high level diagram of CICS Client from Windows to CICS on OS/390.  

Left to right, the Client computer has an Elastic COBOL compiled program 
using CICS ECI call interface to send a CICS request to Jgate. Jgate uses 
TCPIP to send the request to IBM's CICS Client on Windows Server. CICS 
Client uses internal interfaces to send the request to IBM Communications 
Server for Windows. IBM's Communication Server uses SNA/VTAM to send 
the request to CICS on OS/390. CICS analyzes the request, invokes the 
CICS transaction and returns the COMMAREA to the client retracing the 
path to its origin.  

The Elastic COBOL application and Jgate can be located on the Windows 
Server computer or a separate computer as illustrated.   

Invocation of COBOL program compiled with Elastic COBOL, javac, and 
executed using JVM. Location of CICS CLIENT is specified as invocation 
parameter as CICS_CLIENT=tcp://192.168.0.15:2006/. 



 

Elastic COBOL Programmer’s Guide 77 

The format of CICS_CLIENT data is  

protocol://ip_address:port/ 

  protocol     - tcp    

  ip address   - address of the CICS Client server 

  port address - server listening port number 

  :            - paramater separators 

  / and //     - required delimiters 

 

Note: Imbedded blanks are not allowed.  

 

ecobol programname.xxx -app ssprogramename       

javac -classpath %CLASSPATH% ssprogramname.java 

java  -cp %CLASSPATH%   ssprogramname  
CICS_CLIENT=tcp://192.168.0.15:2006/ 

Elastic COBOL CICS Client support uses a ECI call interface to send and 
receive data from CICS. Descriptions of each call function-type is provided in 
"CICS Family: Client/Server Programming".  

CICS Example 

Examples of COBOL programs using CICS ECI interface follow: 

 /******************************************************************/ 
 /******************************************************************/ 
                         CICS Client ECI SYNC 
 /******************************************************************/ 
 /******************************************************************/ 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID.  CICSSYNC. 
       ENVIRONMENT DIVISION. 
       CONFIGURATION SECTION. 
       SOURCE-COMPUTER.  xyz. 
       OBJECT-COMPUTER.  xyz. 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 
 
       01  SQL-COD PIC S9(9) DISPLAY SIGN LEADING SEPARATE. 
       01  UID     PIC X(9) . 
       01  HCONN   PIC X(9) . 
       01  OBJDESC PIC X(9) . 
       01  OPTIONS PIC X(9) . 
       01  HOBJ    PIC X(9) . 
       01  COMPCODE PIC X(9) . 
       01  REASON  PIC X(9) . 
       01  D       PIC X(9) . 
       01  COUT PIC 9(4) COMP-5 VALUE 0. 
      ********************************************************** 
      *                                                        * 
      * MODULE NAME        CICSECI.CBL                         * 
      *                                                        * 
      * DESCRIPTIVE NAME   CICS External Call Interface        * 
      *                                                        * 



 

Elastic COBOL Programmer’s Guide 78 

      * Statement:         Licensed Materials - Property of IBM   
      *                                                                                         
      *                   (c) Copyright IBM Corporation 1994,1997   
      * 
      *                    See Copyright Instructions.        
      *                                                              
      *                    All rights reserved.                        
      *                                                                 
      *                    U.S. Government Users Restricted Rights -    
      *                    use duplication or disclosure restricted  
      *                    by GSA ADP Schedule Contract with  
      *                    IBM Corp.    
      *                                                              
      * Status:            Version 2 Release 0         
      *                                                                 
      * NOTES :-                                                        
      *                                                                
      * This copybook is provided with the CICS Client.                
      *                                                                 
      ************************************************************ 
      * 
      * 
      * Parameter block for ECI 
      * 
 
       01 ECI-PARMS. 
           05 ECI-CALL-TYPE                       PIC S9(4) COMP-5. 
                   88 ECI-SYNC-CALL                 VALUE 0. 
                   88 ECI-ASYNC-CALL                VALUE 1. 
                   88 ECI-SYNC-PARALLEL             VALUE 2. 
                   88 ECI-ASYNC-PARALLEL            VALUE 3. 
                   88 ECI-SYNC                      VALUE 516. 
                   88 ECI-ASYNC                     VALUE 517. 
                   88 ECI-ASYNC-NOTIFY-MSG          VALUE 518. 
                   88 ECI-ASYNC-NOTIFY-SEM          VALUE 519. 
                   88 ECI-GET-REPLY                 VALUE 520. 
                   88 ECI-GET-REPLY-WAIT            VALUE 521. 
                   88 ECI-STATE-SYNC                VALUE 522. 
                   88 ECI-STATE-ASYNC               VALUE 523. 
                   88 ECI-STATE-ASYNC-SEM           VALUE 524. 
                   88 ECI-STATE-ASYNC-MSG           VALUE 525. 
                   88 ECI-GET-SPECIFIC-REPLY        VALUE 528. 
                   88 ECI-GET-SPECIFIC-REPLY-WAIT   VALUE 529. 
           05 ECI-PROGRAM-NAME                    PIC X(8). 
           05 ECI-USERID                          PIC X(8). 
           05 ECI-PASSWORD                        PIC X(8). 
           05 ECI-TRANSID                         PIC X(4). 
           05 ECI-ABEND-CODE                      PIC X(4). 
           05 ECI-COMMAREA                        POINTER. 
           05 ECI-COMMAREA-LENGTH                 PIC S9(4) COMP-5. 
           05 ECI-TIMEOUT                         PIC S9(4) COMP-5. 
           05 ECI-SYS-RETURN-CODE                 PIC S9(4) COMP-5. 
           05 ECI-EXTEND-MODE                     PIC S9(4) COMP-5. 
                   88 ECI-NO-EXTEND                 VALUE 0. 
                   88 ECI-EXTENDED                  VALUE 1. 
                   88 ECI-CANCEL                    VALUE 2. 
                   88 ECI-COMMIT                    VALUE 2. 
                   88 ECI-BACKOUT                   VALUE 3. 
                   88 ECI-STATE-IMMEDIATE           VALUE 4. 
                   88 ECI-STATE-CHANGED             VALUE 5. 
                   88 ECI-STATE-CANCEL              VALUE 6. 
           05 ECI-WINDOW-HANDLE                   PIC S9(8) COMP-5. 
           05 ECI-SEM-HANDLE REDEFINES ECI-WINDOW-HANDLE 



 

Elastic COBOL Programmer’s Guide 79 

                                                  PIC S9(8) COMP-5. 
           05 FILLER         REDEFINES ECI-WINDOW-HANDLE. 
               10 ECI-MS-WINDOW-HANDLE            PIC S9(4) COMP-5. 
               10 ECI-MS-INSTANCE-HANDLE          PIC S9(4) COMP-5. 
           05 ECI-MESSAGE-ID                      PIC  9(4) COMP-5. 
           05 ECI-MESSAGE-QUALIFIER               PIC S9(4) COMP-5. 
           05 ECI-LUW-TOKEN                       PIC S9(8) COMP-5. 
                   88 ECI-LUW-NEW                   VALUE 0. 
           05 ECI-SYSID                           PIC X(4). 
           05 ECI-VERSION                         PIC S9(4) COMP-5. 
                   88 ECI-VERSION-0                 VALUE 0. 
                   88 ECI-VERSION-1                 VALUE 1. 
                   88 ECI-VERSION-1A                VALUE 2. 
                   88 ECI-VERSION-MAX               VALUE 2. 
           05 ECI-SYSTEM-NAME                      PIC X(8). 
           05 ECI-CALLBACK                PROCEDURE-POINTER. 
           05 ECI-USERID2                         PIC X(16). 
           05 ECI-PASSWORD2                       PIC X(16). 
           05 ECI-TPN                             PIC X(4). 
      *     05 ECI-COMMAREA POINTER. 
      * 
      * List of error returns from CICSEXTERNALCALL 
      * 
 
       01 ECI-ERROR-ID                            PIC S9(4) COMP-5. 
           88 ECI-NO-ERROR                          VALUE  0. 
           88 ECI-ERR-INVALID-DATA-LENGTH           VALUE -1. 
           88 ECI-ERR-INVALID-EXTEND-MODE           VALUE -2. 
           88 ECI-ERR-NO-CICS                       VALUE -3. 
           88 ECI-ERR-CICS-DIED                     VALUE -4. 
           88 ECI-ERR-REQUEST-TIMEOUT               VALUE -5. 
           88 ECI-ERR-NO-REPLY                      VALUE -5. 
           88 ECI-ERR-RESPONSE-TIMEOUT              VALUE -6. 
           88 ECI-ERR-TRANSACTION-ABEND             VALUE -7. 
           88 ECI-ERR-EXEC-NOT-RESIDENT             VALUE -8. 
           88 ECI-ERR-LUW-TOKEN                     VALUE -8. 
           88 ECI-ERR-SYSTEM-ERROR                  VALUE -9. 
           88 ECI-ERR-NULL-WIN-HANDLE               VALUE -10. 
           88 ECI-ERR-NULL-MESSAGE-ID               VALUE -12. 
           88 ECI-ERR-THREAD-CREATE-ERROR           VALUE -13. 
           88 ECI-ERR-INVALID-CALL-TYPE             VALUE -14. 
           88 ECI-ERR-ALREADY-ACTIVE                VALUE -15. 
           88 ECI-ERR-RESOURCE-SHORTAGE             VALUE -16. 
           88 ECI-ERR-NO-SESSIONS                   VALUE -17. 
           88 ECI-ERR-NULL-SEM-HANDLE               VALUE -18. 
           88 ECI-ERR-INVALID-DATA-AREA             VALUE -19. 
           88 ECI-ERR-INVALID-VERSION               VALUE -21. 
           88 ECI-ERR-UNKNOWN-SERVER                VALUE -22. 
           88 ECI-ERR-CALL-FROM-CALLBACK            VALUE -23. 
           88 ECI-ERR-INVALID-TRANSID               VALUE -24. 
           88 ECI-ERR-MORE-SYSTEMS                  VALUE -25. 
           88 ECI-ERR-NO-SYSTEMS                    VALUE -26. 
           88 ECI-ERR-SECURITY-ERROR                VALUE -27. 
           88 ECI-ERR-MAX-SYSTEMS                   VALUE -28. 
 
           88 ECI-ERR-MAX-SESSIONS                  VALUE -29. 
           88 ECI-ERR-ROLLEDBACK                    VALUE -30. 
 
      * 
      * Commarea layout for ECI-STATE-xxx CallType requests other  
      * than when the  ExtendMode is ECI-STATE-CANCEL. 
      * 
      * It should be supplied with valid values for a request where  



 

Elastic COBOL Programmer’s Guide 80 

      * the ExtendMode is ECI-STATE-CHANGED.  In this case a  
      * response will be returned only when the status is different  
      *to that which was supplied. 
      * 
      * It will be returned with the current status in these fields  
      * except where  the ExtendMode is ECI-STATE-CANCEL. 
      * 
 
       01 ECI-STATUS. 
           05 ECI-CONNECTION-TYPE                 PIC S9(4) COMP-5. 
                   88 ECI-CONNECTED-NOWHERE         VALUE 0. 
                   88 ECI-CONNECTED-TO-SERVER       VALUE 1. 
                   88 ECI-CONNECTED-TO-CLIENT       VALUE 2. 
           05 ECI-CICS-SERVER-STATUS              PIC S9(4) COMP-5. 
                   88 ECI-SERVERSTATE-UNKNOWN       VALUE 0. 
                   88 ECI-SERVERSTATE-UP            VALUE 1. 
                   88 ECI-SERVERSTATE-DOWN          VALUE 2. 
           05 ECI-CICS-CLIENT-STATUS              PIC S9(4) COMP-5. 
                   88 ECI-CLIENTSTATE-UNKNOWN       VALUE 0. 
                   88 ECI-CLIENTSTATE-UP            VALUE 1. 
                   88 ECI-CLIENTSTATE-INAPPLICABLE  VALUE 2. 
           05 FILLER                              PIC S9(4) COMP-5. 
           05 FILLER                              PIC S9(4) COMP-5. 
      *  01 COMMAREA PIC X(300). 
      * 
      *  CICSECILISTSYSTEMS. 
      * 
      *  Note: The value '16' assigned to CICS-ECINUMSYS and the  
      *        matching value in the OCCURS clause for  
      *        CICS-ECISYSTEM may need be increased if the  
      *        ECI-ERR-MORE-SYSTEMS error occurs. 
      * 
 
       77 CICS-ECI-SYSTEM-MAX           PIC 9(4) COMP-5 VALUE 8. 
       77 CICS-ECI-DESCRIPTION-MAX      PIC 9(4) COMP-5 VALUE 60. 
 
       77 CICS-ECINUMSYS                PIC 9(4) COMP-5 VALUE 16. 
 
       01 CICS-ECISYSTEM. 
           02 FILLER 
           OCCURS 0 TO 16 TIMES DEPENDING ON CICS-ECINUMSYS. 
               05 SYSTEMNAME            PIC X(8). 
               05 FILLER                PIC X. 
               05 SYSTEMDESC            PIC X(60). 
               05 FILLER                PIC X. 
 
 
       01 COMMAREA2 PIC X(500). 
       LINKAGE SECTION. 
       01 COMMAREA. 
          05 SEND-DATA PIC X(150). 
          05 REC-DATA PIC X(150). 
       PROCEDURE DIVISION USING COMMAREA. 
      *PROCEDURE DIVISION. 
       P0. 
 
             MOVE "This is the commarea for cics." TO COMMAREA. 
      *      MOVE "This is the commarea for cics." TO COMMAREA2. 
 
      *1       MOVE "DFHZCN1" TO ECI-PROGRAM-NAME. 
      *1       MOVE "CCIN"  TO ECI-TRANSID. 
      *1       MOVE "CPMI" TO ECI-TPN. 
 



 

Elastic COBOL Programmer’s Guide 81 

 
      *2       MOVE "DFHZCN1" TO ECI-PROGRAM-NAME. 
      *2       MOVE "CCIN"  TO ECI-TRANSID. 
      *2       MOVE "CPMI" TO ECI-TPN. 
 
             MOVE "LINKPROG" TO ECI-PROGRAM-NAME. 
             MOVE "CPMI"  TO ECI-TRANSID. 
      *       MOVE "CPMI" TO ECI-TPN. 
 
             MOVE "P390" TO  ECI-USERID. 
             MOVE "IBM7TED" TO ECI-PASSWORD. 
      * 
             MOVE "aaaa"    TO ECI-ABEND-CODE. 
             SET ECI-COMMAREA TO ADDRESS OF COMMAREA 
      *      SET  ADDRESS OF COMMAREA TO ECI-COMMAREA. 
             MOVE  LENGTH  OF COMMAREA TO ECI-COMMAREA-LENGTH. 
             DISPLAY "COBOL.COMMAREA.LENGTH=" ECI-COMMAREA-LENGTH. 
             MOVE 00    TO ECI-TIMEOUT. 
             MOVE ZERO    TO ECI-SYS-RETURN-CODE. 
             MOVE ZERO   TO ECI-EXTEND-MODE. 
             MOVE ZERO   TO ECI-WINDOW-HANDLE. 
             MOVE ZERO   TO ECI-SEM-HANDLE. 
             MOVE ZERO   TO ECI-MESSAGE-ID. 
             MOVE ZERO   TO ECI-MESSAGE-QUALIFIER. 
             MOVE ZERO   TO ECI-LUW-TOKEN. 
             MOVE "sys1" TO ECI-SYSID. 
             MOVE 1   TO ECI-VERSION. 
             MOVE "P390" TO ECI-SYSTEM-NAME. 
             MOVE 1      TO CICS-ECI-SYSTEM-MAX. 
      *       SET   ECI-CALLBACK TO  ENTRY P0. 
             SET   ECI-CALLBACK TO  P1. 
      *       SET ECI-CALLBACK TO ENTRY P1. 
             MOVE "P390SNA " TO ECI-SYSTEM-NAME. 
             MOVE "user2 " TO ECI-USERID2. 
             MOVE "ps2 " TO ECI-PASSWORD2. 
 
             MOVE "This is the commarea for cics ECI-SYNC." 
                   TO SEND-DATA. 
             SET ECI-SYNC                      TO TRUE. 
             SET ECI-NO-EXTEND                 TO TRUE.  
      *       DISPLAY " addr of commarea= " ECI-COMMAREA. 
      *       DISPLAY " address2 of commarea= " ADDRESS OF COMMAREA. 
             DISPLAY  
                    " commarea before call to P390\CICS= " COMMAREA. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
             DISPLAY "Extend-Mode=ECI-NO-EXTEND". 
 
             MOVE " " TO REC-DATA. 
             MOVE "This is the commarea for cics ECI-SYNC." 
                   TO SEND-DATA. 
             SET ECI-SYNC                      TO TRUE. 
             SET ECI-EXTENDED                  TO TRUE.  
      *       DISPLAY " addr of commarea= " ECI-COMMAREA. 
      *       DISPLAY " address2 of commarea= " ADDRESS OF COMMAREA. 
             DISPLAY  
                    " commarea before call to P390\CICS= " COMMAREA. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 



 

Elastic COBOL Programmer’s Guide 82 

             DISPLAY "Extend-Mode=ECI-EXTENDED". 
 
             MOVE " " TO REC-DATA.  
             MOVE "This is the commarea for cics ECI-SYNC." 
                   TO SEND-DATA. 
             SET ECI-SYNC                      TO TRUE. 
             SET ECI-COMMIT                    TO TRUE.  
      *       DISPLAY " addr of commarea= " ECI-COMMAREA. 
      *       DISPLAY " address2 of commarea= " ADDRESS OF COMMAREA. 
             DISPLAY  
                    " commarea before call to P390\CICS= " COMMAREA. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
             DISPLAY "Extend-Mode=ECI-COMMIT".  
 
             MOVE " " TO REC-DATA. 
             MOVE "This is the commarea for cics ECI-SYNC." 
                   TO SEND-DATA. 
             SET ECI-SYNC                      TO TRUE. 
             SET ECI-BACKOUT                   TO TRUE.  
      *       DISPLAY " addr of commarea= " ECI-COMMAREA. 
      *       DISPLAY " address2 of commarea= " ADDRESS OF COMMAREA. 
             DISPLAY  
                    " commarea before call to P390\CICS= " COMMAREA. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
             DISPLAY "Extend-Mode=ECI-BACKOUT".              
 
            STOP RUN. 
       P1. 
            MOVE "ABC" TO D. 
            DISPLAY " P1 entered ". 
            DISPLAY " P1 COMMAREA= " COMMAREA. 
            DISPLAY " P1 entered ".   
/******************************************************************/ 
 /******************************************************************/ 
                         CICS Client ECI ASYNC 
 /******************************************************************/ 
 /******************************************************************/ 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID.  CICSASYNC. 
       ENVIRONMENT DIVISION. 
       CONFIGURATION SECTION. 
       SOURCE-COMPUTER.  xyz. 
       OBJECT-COMPUTER.  xyz. 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 
 
       01  SQL-COD PIC S9(9) DISPLAY SIGN LEADING SEPARATE. 
       01  UID     PIC X(9) . 
       01  HCONN   PIC X(9) . 
       01  OBJDESC PIC X(9) . 
       01  OPTIONS PIC X(9) . 
       01  HOBJ    PIC X(9) . 
       01  COMPCODE PIC X(9) . 
       01  REASON  PIC X(9) . 
       01  D       PIC X(9) . 
       01  COUT PIC 9(4) COMP-5 VALUE 0. 
      ************************************************************ 



 

Elastic COBOL Programmer’s Guide 83 

      *                                                           * 
      * MODULE NAME        CICSECI.CBL                                  
      *                                                                 
      * DESCRIPTIVE NAME   CICS External Call Interface                 
      *                                                                 
      * Statement:         Licensed Materials - Property of IBM         
      *                                                                 
      *                    63H9790                                      
      *                    (c) Copyright IBM Corporation 1994,1997      
      *                                                                 
      *                    See Copyright Instructions.                 
      *                                                                 
      *                    All rights reserved.                        
      *                                                                 
      *                    U.S. Government Users Restricted Rights -    
      *                    use duplication or disclosure restricted  
      *                    by GSA ADP Schedule Contract with IBM  
      *                    Corp.    
      *                                                                 
      * Status:            Version 2 Release 0                                                                                     
      * NOTES :-                                                        
      *                                                                 
      * This copybook is provided with the CICS Client.                                                                         
      ************************************************************ 
      * 
      * Parameter block for ECI 
      * 
       01 ECI-PARMS. 
           05 ECI-CALL-TYPE                       PIC S9(4) COMP-5. 
                   88 ECI-SYNC-CALL                 VALUE 0. 
                   88 ECI-ASYNC-CALL                VALUE 1. 
                   88 ECI-SYNC-PARALLEL             VALUE 2. 
                   88 ECI-ASYNC-PARALLEL            VALUE 3. 
                   88 ECI-SYNC                      VALUE 516. 
                   88 ECI-ASYNC                     VALUE 517. 
                   88 ECI-ASYNC-NOTIFY-MSG          VALUE 518. 
                   88 ECI-ASYNC-NOTIFY-SEM          VALUE 519. 
                   88 ECI-GET-REPLY                 VALUE 520. 
                   88 ECI-GET-REPLY-WAIT            VALUE 521. 
                   88 ECI-STATE-SYNC                VALUE 522. 
                   88 ECI-STATE-ASYNC               VALUE 523. 
                   88 ECI-STATE-ASYNC-SEM           VALUE 524. 
                   88 ECI-STATE-ASYNC-MSG           VALUE 525. 
                   88 ECI-GET-SPECIFIC-REPLY        VALUE 528. 
                   88 ECI-GET-SPECIFIC-REPLY-WAIT   VALUE 529. 
           05 ECI-PROGRAM-NAME                    PIC X(8). 
           05 ECI-USERID                          PIC X(8). 
           05 ECI-PASSWORD                        PIC X(8). 
           05 ECI-TRANSID                         PIC X(4). 
           05 ECI-ABEND-CODE                      PIC X(4). 
           05 ECI-COMMAREA                        POINTER. 
           05 ECI-COMMAREA-LENGTH                 PIC S9(4) COMP-5. 
           05 ECI-TIMEOUT                         PIC S9(4) COMP-5. 
           05 ECI-SYS-RETURN-CODE                 PIC S9(4) COMP-5. 
           05 ECI-EXTEND-MODE                     PIC S9(4) COMP-5. 
                   88 ECI-NO-EXTEND                 VALUE 0. 
                   88 ECI-EXTENDED                  VALUE 1. 
                   88 ECI-CANCEL                    VALUE 2. 
                   88 ECI-COMMIT                    VALUE 2. 
                   88 ECI-BACKOUT                   VALUE 3. 
                   88 ECI-STATE-IMMEDIATE           VALUE 4. 
                   88 ECI-STATE-CHANGED             VALUE 5. 
                   88 ECI-STATE-CANCEL              VALUE 6. 



 

Elastic COBOL Programmer’s Guide 84 

           05 ECI-WINDOW-HANDLE                   PIC S9(8) COMP-5. 
           05 ECI-SEM-HANDLE REDEFINES ECI-WINDOW-HANDLE 
                                                  PIC S9(8) COMP-5. 
           05 FILLER         REDEFINES ECI-WINDOW-HANDLE. 
               10 ECI-MS-WINDOW-HANDLE            PIC S9(4) COMP-5. 
               10 ECI-MS-INSTANCE-HANDLE          PIC S9(4) COMP-5. 
           05 ECI-MESSAGE-ID                      PIC  9(4) COMP-5. 
           05 ECI-MESSAGE-QUALIFIER               PIC S9(4) COMP-5. 
           05 ECI-LUW-TOKEN                       PIC S9(8) COMP-5. 
                   88 ECI-LUW-NEW                   VALUE 0. 
           05 ECI-SYSID                           PIC X(4). 
           05 ECI-VERSION                         PIC S9(4) COMP-5. 
                   88 ECI-VERSION-0                 VALUE 0. 
                   88 ECI-VERSION-1                 VALUE 1. 
                   88 ECI-VERSION-1A                VALUE 2. 
                   88 ECI-VERSION-MAX               VALUE 2. 
           05 ECI-SYSTEM-NAME                      PIC X(8). 
           05 ECI-CALLBACK                PROCEDURE-POINTER. 
           05 ECI-USERID2                         PIC X(16). 
           05 ECI-PASSWORD2                       PIC X(16). 
           05 ECI-TPN                             PIC X(4). 
      *     05 ECI-COMMAREA POINTER. 
      * 
      * List of error returns from CICSEXTERNALCALL 
      * 
 
       01 ECI-ERROR-ID                            PIC S9(4) COMP-5. 
           88 ECI-NO-ERROR                          VALUE  0. 
           88 ECI-ERR-INVALID-DATA-LENGTH           VALUE -1. 
           88 ECI-ERR-INVALID-EXTEND-MODE           VALUE -2. 
           88 ECI-ERR-NO-CICS                       VALUE -3. 
           88 ECI-ERR-CICS-DIED                     VALUE -4. 
           88 ECI-ERR-REQUEST-TIMEOUT               VALUE -5. 
           88 ECI-ERR-NO-REPLY                      VALUE -5. 
           88 ECI-ERR-RESPONSE-TIMEOUT              VALUE -6. 
           88 ECI-ERR-TRANSACTION-ABEND             VALUE -7. 
           88 ECI-ERR-EXEC-NOT-RESIDENT             VALUE -8. 
           88 ECI-ERR-LUW-TOKEN                     VALUE -8. 
           88 ECI-ERR-SYSTEM-ERROR                  VALUE -9. 
           88 ECI-ERR-NULL-WIN-HANDLE               VALUE -10. 
           88 ECI-ERR-NULL-MESSAGE-ID               VALUE -12. 
           88 ECI-ERR-THREAD-CREATE-ERROR           VALUE -13. 
           88 ECI-ERR-INVALID-CALL-TYPE             VALUE -14. 
           88 ECI-ERR-ALREADY-ACTIVE                VALUE -15. 
           88 ECI-ERR-RESOURCE-SHORTAGE             VALUE -16. 
           88 ECI-ERR-NO-SESSIONS                   VALUE -17. 
           88 ECI-ERR-NULL-SEM-HANDLE               VALUE -18. 
           88 ECI-ERR-INVALID-DATA-AREA             VALUE -19. 
           88 ECI-ERR-INVALID-VERSION               VALUE -21. 
           88 ECI-ERR-UNKNOWN-SERVER                VALUE -22. 
           88 ECI-ERR-CALL-FROM-CALLBACK            VALUE -23. 
           88 ECI-ERR-INVALID-TRANSID               VALUE -24. 
           88 ECI-ERR-MORE-SYSTEMS                  VALUE -25. 
           88 ECI-ERR-NO-SYSTEMS                    VALUE -26. 
           88 ECI-ERR-SECURITY-ERROR                VALUE -27. 
           88 ECI-ERR-MAX-SYSTEMS                   VALUE -28. 
           88 ECI-ERR-MAX-SESSIONS                  VALUE -29. 
           88 ECI-ERR-ROLLEDBACK                    VALUE -30. 
 
      * 
      * Commarea layout for ECI-STATE-xxx CallType requests other 
      * than when the  ExtendMode is ECI-STATE-CANCEL. 
      * 



 

Elastic COBOL Programmer’s Guide 85 

      * It should be supplied with valid values for a request where 
      * the ExtendMode is ECI-STATE-CHANGED.  In this case a  
      * response will be returned only when the status is different 
      * to that which was supplied. 
      * 
      * It will be returned with the current status in these fields 
      * except where  the ExtendMode is ECI-STATE-CANCEL. 
 
      * 
 
       01 ECI-STATUS. 
           05 ECI-CONNECTION-TYPE                 PIC S9(4) COMP-5. 
                   88 ECI-CONNECTED-NOWHERE         VALUE 0. 
                   88 ECI-CONNECTED-TO-SERVER       VALUE 1. 
                   88 ECI-CONNECTED-TO-CLIENT       VALUE 2. 
           05 ECI-CICS-SERVER-STATUS              PIC S9(4) COMP-5. 
                   88 ECI-SERVERSTATE-UNKNOWN       VALUE 0. 
                   88 ECI-SERVERSTATE-UP            VALUE 1. 
                   88 ECI-SERVERSTATE-DOWN          VALUE 2. 
           05 ECI-CICS-CLIENT-STATUS              PIC S9(4) COMP-5. 
                   88 ECI-CLIENTSTATE-UNKNOWN       VALUE 0. 
                   88 ECI-CLIENTSTATE-UP            VALUE 1. 
                   88 ECI-CLIENTSTATE-INAPPLICABLE  VALUE 2. 
           05 FILLER                              PIC S9(4) COMP-5. 
           05 FILLER                              PIC S9(4) COMP-5. 
      *  01 COMMAREA PIC X(300). 
      * 
      *  CICSECILISTSYSTEMS. 
      * 
      *  Note: The value '16' assigned to CICS-ECINUMSYS and the  
      *  matching value in the OCCURS clause for CICS-ECISYSTEM may 
      *  need be increased if the ECI-ERR-MORE-SYSTEMS error  
      *  occurs. 
      * 
 
       77 CICS-ECI-SYSTEM-MAX           PIC 9(4) COMP-5 VALUE 8. 
       77 CICS-ECI-DESCRIPTION-MAX      PIC 9(4) COMP-5 VALUE 60. 
 
       77 CICS-ECINUMSYS                PIC 9(4) COMP-5 VALUE 16. 
 
       01 CICS-ECISYSTEM. 
           02 FILLER 
           OCCURS 0 TO 16 TIMES DEPENDING ON CICS-ECINUMSYS. 
               05 SYSTEMNAME            PIC X(8). 
               05 FILLER                PIC X. 
               05 SYSTEMDESC            PIC X(60). 
               05 FILLER                PIC X. 
 
 
       01 COMMAREA2 PIC X(500). 
       LINKAGE SECTION. 
       01 COMMAREA. 
          05 SEND-DATA PIC X(150). 
          05 REC-DATA PIC X(150). 
       PROCEDURE DIVISION USING COMMAREA. 
      *PROCEDURE DIVISION. 
       P0. 
 
             MOVE "This is the commarea for cics." TO COMMAREA. 
      *      MOVE "This is the commarea for cics." TO COMMAREA2. 
 
      *1       MOVE "DFHZCN1" TO ECI-PROGRAM-NAME. 
      *1       MOVE "CCIN"  TO ECI-TRANSID. 



 

Elastic COBOL Programmer’s Guide 86 

      *1       MOVE "CPMI" TO ECI-TPN. 
 
      *2       MOVE "DFHZCN1" TO ECI-PROGRAM-NAME. 
      *2       MOVE "CCIN"  TO ECI-TRANSID. 
      *2       MOVE "CPMI" TO ECI-TPN. 
 
             MOVE "LINKPROG" TO ECI-PROGRAM-NAME. 
             MOVE "CPMI"  TO ECI-TRANSID. 
      *       MOVE "CPMI" TO ECI-TPN. 
 
             MOVE "P390" TO  ECI-USERID. 
             MOVE "IBM7TED" TO ECI-PASSWORD. 
      * 
             MOVE "aaaa"    TO ECI-ABEND-CODE. 
             SET ECI-COMMAREA TO ADDRESS OF COMMAREA 
      *      SET  ADDRESS OF COMMAREA TO ECI-COMMAREA. 
             MOVE  LENGTH  OF COMMAREA TO ECI-COMMAREA-LENGTH. 
             DISPLAY "COBOL.COMMAREA.LENGTH=" ECI-COMMAREA-LENGTH. 
             MOVE 00    TO ECI-TIMEOUT. 
             MOVE ZERO    TO ECI-SYS-RETURN-CODE. 
             MOVE ZERO   TO ECI-EXTEND-MODE. 
             MOVE ZERO   TO ECI-WINDOW-HANDLE. 
             MOVE ZERO   TO ECI-SEM-HANDLE. 
             MOVE ZERO   TO ECI-MESSAGE-ID. 
             MOVE ZERO   TO ECI-MESSAGE-QUALIFIER. 
             MOVE ZERO   TO ECI-LUW-TOKEN. 
             MOVE "sys1" TO ECI-SYSID. 
             MOVE 1   TO ECI-VERSION. 
             MOVE "P390" TO ECI-SYSTEM-NAME. 
             MOVE 1      TO CICS-ECI-SYSTEM-MAX. 
      *       SET   ECI-CALLBACK TO  ENTRY P0. 
      *       SET   ECI-CALLBACK TO  P1. 
             SET ECI-CALLBACK TO NULL.  
      *       SET ECI-CALLBACK TO ENTRY P1. 
             MOVE "P390SNA " TO ECI-SYSTEM-NAME. 
             MOVE "user2 " TO ECI-USERID2. 
             MOVE "ps2 " TO ECI-PASSWORD2. 
 
             MOVE "This is the commarea for cics ECI-ASYNC." 
                   TO SEND-DATA. 
             MOVE " " TO REC-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             SET ECI-NO-EXTEND                 TO TRUE.  
             DISPLAY  
                   " commarea before call to P390\CICS= " COMMAREA.   
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
              
             MOVE " " TO REC-DATA. 
             MOVE "This is the commarea for cics ECI-SYNC." 
                   TO SEND-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             SET ECI-EXTENDED                  TO TRUE.  
      *       DISPLAY " addr of commarea= " ECI-COMMAREA. 
      *       DISPLAY " address2 of commarea= " ADDRESS OF COMMAREA. 
             DISPLAY  
                    " commarea before call to P390\CICS= " COMMAREA. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 



 

Elastic COBOL Programmer’s Guide 87 

             DISPLAY "Extend-Mode=ECI-EXTENDED". 
 
             MOVE " " TO REC-DATA.  
             MOVE "This is the commarea for cics ECI-SYNC." 
                   TO SEND-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             SET ECI-COMMIT                    TO TRUE.  
      *       DISPLAY " addr of commarea= " ECI-COMMAREA. 
      *       DISPLAY " address2 of commarea= " ADDRESS OF COMMAREA. 
             DISPLAY  
                    " commarea before call to P390\CICS= " COMMAREA. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
             DISPLAY "Extend-Mode=ECI-COMMIT".  
 
             MOVE " " TO REC-DATA. 
             MOVE "This is the commarea for cics ECI-SYNC." 
                   TO SEND-DATA. 
             SET ECI-ASYNC                      TO TRUE. 
             SET ECI-BACKOUT                   TO TRUE.  
      *       DISPLAY " addr of commarea= " ECI-COMMAREA. 
      *       DISPLAY " address2 of commarea= " ADDRESS OF COMMAREA. 
             DISPLAY  
                    " commarea before call to P390\CICS= " COMMAREA. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
             DISPLAY "Extend-Mode=ECI-BACKOUT".              
 
           STOP RUN. 
       P1. 
            MOVE "ABC" TO D. 
            DISPLAY " P1 entered ". 
            DISPLAY " Commarea may not contain CICS response,". 
            DISPLAY " ASYNC doesn't wait for response." COMMAREA. 
/******************************************************************/ 
 /******************************************************************/ 
                         CICS Client ECI Get Specific Reply  
 /******************************************************************/ 
 /******************************************************************/ 
       IDENTIFICATION DIVISION. 
       PROGRAM-ID.  CICSGETSPECIFICREPLY. 
       ENVIRONMENT DIVISION. 
       CONFIGURATION SECTION. 
       SOURCE-COMPUTER.  xyz. 
       OBJECT-COMPUTER.  xyz. 
       DATA DIVISION. 
       WORKING-STORAGE SECTION. 
 
       01  SQL-COD PIC S9(9) DISPLAY SIGN LEADING SEPARATE. 
       01  UID     PIC X(9) . 
       01  HCONN   PIC X(9) . 
       01  OBJDESC PIC X(9) . 
       01  OPTIONS PIC X(9) . 
       01  HOBJ    PIC X(9) . 
       01  COMPCODE PIC X(9) . 
       01  REASON  PIC X(9) . 
       01  D       PIC X(9) . 
       01  COUT PIC 9(4) COMP-5 VALUE 0. 
      ************************************************************* 



 

Elastic COBOL Programmer’s Guide 88 

 * MODULE NAME      CICSECI.CBL                                                                  
 * DESCRIPTIVE NAME CICS External Call Interface                                                           
 * Statement:       Licensed Materials - Property of IBM        
 *                                                          
 *                  63H9790                                      
 *                  (c) Copyright IBM Corporation 1994,1997      
 *                                                                 
 *                  See Copyright Instructions.                 
 *                                                                 
 *                  All rights reserved.                        
 *                                                                 
 *                  U.S. Government Users Restricted Rights -    
 *                  use duplication or disclosure restricted by  
 *                  GSA ADP Schedule Contract with IBM Corp.    
 *                                                                 
 * Status:          Version 2 Release 0                          
 *                                                                 
 * NOTES :-                                                        

      *                                                                 
      * This copybook is provided with the CICS Client.                       
      *                                                                 
      *      
      ************************************************************** 
      * 
      * Parameter block for ECI 
      * 
       01 ECI-PARMS. 
           05 ECI-CALL-TYPE                       PIC S9(4) COMP-5. 
                   88 ECI-SYNC-CALL                 VALUE 0. 
                   88 ECI-ASYNC-CALL                VALUE 1. 
                   88 ECI-SYNC-PARALLEL             VALUE 2. 
                   88 ECI-ASYNC-PARALLEL            VALUE 3. 
                   88 ECI-SYNC                      VALUE 516. 
                   88 ECI-ASYNC                     VALUE 517. 
                   88 ECI-ASYNC-NOTIFY-MSG          VALUE 518. 
                   88 ECI-ASYNC-NOTIFY-SEM          VALUE 519. 
                   88 ECI-GET-REPLY                 VALUE 520. 
                   88 ECI-GET-REPLY-WAIT            VALUE 521. 
                   88 ECI-STATE-SYNC                VALUE 522. 
                   88 ECI-STATE-ASYNC               VALUE 523. 
                   88 ECI-STATE-ASYNC-SEM           VALUE 524. 
                   88 ECI-STATE-ASYNC-MSG           VALUE 525. 
                   88 ECI-GET-SPECIFIC-REPLY        VALUE 528. 
                   88 ECI-GET-SPECIFIC-REPLY-WAIT   VALUE 529. 
           05 ECI-PROGRAM-NAME                    PIC X(8). 
           05 ECI-USERID                          PIC X(8). 
           05 ECI-PASSWORD                        PIC X(8). 
           05 ECI-TRANSID                         PIC X(4). 
           05 ECI-ABEND-CODE                      PIC X(4). 
           05 ECI-COMMAREA                        POINTER. 
           05 ECI-COMMAREA-LENGTH                 PIC S9(4) COMP-5. 
           05 ECI-TIMEOUT                         PIC S9(4) COMP-5. 
           05 ECI-SYS-RETURN-CODE                 PIC S9(4) COMP-5. 
           05 ECI-EXTEND-MODE                     PIC S9(4) COMP-5. 
                   88 ECI-NO-EXTEND                 VALUE 0. 
                   88 ECI-EXTENDED                  VALUE 1. 
                   88 ECI-CANCEL                    VALUE 2. 
                   88 ECI-COMMIT                    VALUE 2. 
                   88 ECI-BACKOUT                   VALUE 3. 
                   88 ECI-STATE-IMMEDIATE           VALUE 4. 
                   88 ECI-STATE-CHANGED             VALUE 5. 
                   88 ECI-STATE-CANCEL              VALUE 6. 
           05 ECI-WINDOW-HANDLE                   PIC S9(8) COMP-5. 



 

Elastic COBOL Programmer’s Guide 89 

           05 ECI-SEM-HANDLE REDEFINES ECI-WINDOW-HANDLE 
                                                  PIC S9(8) COMP-5. 
           05 FILLER         REDEFINES ECI-WINDOW-HANDLE. 
               10 ECI-MS-WINDOW-HANDLE            PIC S9(4) COMP-5. 
               10 ECI-MS-INSTANCE-HANDLE          PIC S9(4) COMP-5. 
           05 ECI-MESSAGE-ID                      PIC  9(4) COMP-5. 
           05 ECI-MESSAGE-QUALIFIER               PIC S9(4) COMP-5. 
           05 ECI-LUW-TOKEN                       PIC S9(8) COMP-5. 
                   88 ECI-LUW-NEW                   VALUE 0. 
           05 ECI-SYSID                           PIC X(4). 
           05 ECI-VERSION                         PIC S9(4) COMP-5. 
                   88 ECI-VERSION-0                 VALUE 0. 
                   88 ECI-VERSION-1                 VALUE 1. 
                   88 ECI-VERSION-1A                VALUE 2. 
                   88 ECI-VERSION-MAX               VALUE 2. 
           05 ECI-SYSTEM-NAME                      PIC X(8). 
           05 ECI-CALLBACK                PROCEDURE-POINTER. 
           05 ECI-USERID2                         PIC X(16). 
           05 ECI-PASSWORD2                       PIC X(16). 
           05 ECI-TPN                             PIC X(4). 
      *     05 ECI-COMMAREA POINTER. 
      * 
      * List of error returns from CICSEXTERNALCALL 
      * 
 
       01 ECI-ERROR-ID                            PIC S9(4) COMP-5. 
           88 ECI-NO-ERROR                          VALUE  0. 
           88 ECI-ERR-INVALID-DATA-LENGTH           VALUE -1. 
           88 ECI-ERR-INVALID-EXTEND-MODE           VALUE -2. 
           88 ECI-ERR-NO-CICS                       VALUE -3. 
           88 ECI-ERR-CICS-DIED                     VALUE -4. 
           88 ECI-ERR-REQUEST-TIMEOUT               VALUE -5. 
           88 ECI-ERR-NO-REPLY                      VALUE -5. 
           88 ECI-ERR-RESPONSE-TIMEOUT              VALUE -6. 
           88 ECI-ERR-TRANSACTION-ABEND             VALUE -7. 
           88 ECI-ERR-EXEC-NOT-RESIDENT             VALUE -8. 
           88 ECI-ERR-LUW-TOKEN                     VALUE -8. 
           88 ECI-ERR-SYSTEM-ERROR                  VALUE -9. 
           88 ECI-ERR-NULL-WIN-HANDLE               VALUE -10. 
           88 ECI-ERR-NULL-MESSAGE-ID               VALUE -12. 
           88 ECI-ERR-THREAD-CREATE-ERROR           VALUE -13. 
           88 ECI-ERR-INVALID-CALL-TYPE             VALUE -14. 
           88 ECI-ERR-ALREADY-ACTIVE                VALUE -15. 
           88 ECI-ERR-RESOURCE-SHORTAGE             VALUE -16. 
           88 ECI-ERR-NO-SESSIONS                   VALUE -17. 
           88 ECI-ERR-NULL-SEM-HANDLE               VALUE -18. 
           88 ECI-ERR-INVALID-DATA-AREA             VALUE -19. 
           88 ECI-ERR-INVALID-VERSION               VALUE -21. 
           88 ECI-ERR-UNKNOWN-SERVER                VALUE -22. 
           88 ECI-ERR-CALL-FROM-CALLBACK            VALUE -23. 
           88 ECI-ERR-INVALID-TRANSID               VALUE -24. 
           88 ECI-ERR-MORE-SYSTEMS                  VALUE -25. 
           88 ECI-ERR-NO-SYSTEMS                    VALUE -26. 
           88 ECI-ERR-SECURITY-ERROR                VALUE -27. 
           88 ECI-ERR-MAX-SYSTEMS                   VALUE -28. 
           88 ECI-ERR-MAX-SESSIONS                  VALUE -29. 
           88 ECI-ERR-ROLLEDBACK                    VALUE -30. 
 
      * 
      * Commarea layout for ECI-STATE-xxx CallType requests other  
      * than when the  ExtendMode is ECI-STATE-CANCEL. 
      * 
      * It should be supplied with valid values for a request where  



 

Elastic COBOL Programmer’s Guide 90 

      * the ExtendMode is ECI-STATE-CHANGED.  In this case a  
      * response will be returned only when the status is  
      * different to that which was supplied. 
      * 

     * It will be returned with the current status in these fields 
     * except where  the ExtendMode is ECI-STATE-CANCEL.       

 
       01 ECI-STATUS. 
           05 ECI-CONNECTION-TYPE                 PIC S9(4) COMP-5. 
                   88 ECI-CONNECTED-NOWHERE         VALUE 0. 
                   88 ECI-CONNECTED-TO-SERVER       VALUE 1. 
                   88 ECI-CONNECTED-TO-CLIENT       VALUE 2. 
           05 ECI-CICS-SERVER-STATUS              PIC S9(4) COMP-5. 
                   88 ECI-SERVERSTATE-UNKNOWN       VALUE 0. 
                   88 ECI-SERVERSTATE-UP            VALUE 1. 
                   88 ECI-SERVERSTATE-DOWN          VALUE 2. 
           05 ECI-CICS-CLIENT-STATUS              PIC S9(4) COMP-5. 
                   88 ECI-CLIENTSTATE-UNKNOWN       VALUE 0. 
                   88 ECI-CLIENTSTATE-UP            VALUE 1. 
                   88 ECI-CLIENTSTATE-INAPPLICABLE  VALUE 2. 
           05 FILLER                              PIC S9(4) COMP-5. 
           05 FILLER                              PIC S9(4) COMP-5. 
      *  01 COMMAREA PIC X(300). 
      * 
      *  CICSECILISTSYSTEMS. 
      * 
      *  Note: The value '16' assigned to CICS-ECINUMSYS and the X 
      *  except value in the OCCURS clause for CICS-ECISYSTEM may  
      *  need be increased if the ECI-ERR-MORE-SYSTEMS error occurs. 
      * 
 
       77 CICS-ECI-SYSTEM-MAX           PIC 9(4) COMP-5 VALUE 8. 
       77 CICS-ECI-DESCRIPTION-MAX      PIC 9(4) COMP-5 VALUE 60. 
 
       77 CICS-ECINUMSYS                PIC 9(4) COMP-5 VALUE 16. 
 
       01 CICS-ECISYSTEM. 
           02 FILLER 
           OCCURS 0 TO 16 TIMES DEPENDING ON CICS-ECINUMSYS. 
               05 SYSTEMNAME            PIC X(8). 
               05 FILLER                PIC X. 
               05 SYSTEMDESC            PIC X(60). 
               05 FILLER                PIC X. 
 
 
       01 COMMAREA2 PIC X(500). 
       LINKAGE SECTION. 
       01 COMMAREA.          
          05 SEND-DATA PIC X(147). 
          05 MSG-QUAL PIC X(3). 
          05 REC-DATA PIC X(150).   
       PROCEDURE DIVISION USING COMMAREA. 
      *PROCEDURE DIVISION. 
       P0. 
 
             MOVE "This is the commarea for cics." TO COMMAREA. 
      *      MOVE "This is the commarea for cics." TO COMMAREA2. 
 
      *1       MOVE "DFHZCN1" TO ECI-PROGRAM-NAME. 
      *1       MOVE "CCIN"  TO ECI-TRANSID. 
      *1       MOVE "CPMI" TO ECI-TPN. 
 
 



 

Elastic COBOL Programmer’s Guide 91 

      *2       MOVE "DFHZCN1" TO ECI-PROGRAM-NAME. 
      *2       MOVE "CCIN"  TO ECI-TRANSID. 
      *2       MOVE "CPMI" TO ECI-TPN. 
 
             MOVE "LINKPROG" TO ECI-PROGRAM-NAME. 
             MOVE "CPMI"  TO ECI-TRANSID. 
      *       MOVE "CPMI" TO ECI-TPN. 
 
             MOVE "P390" TO  ECI-USERID. 
             MOVE "IBM7TED" TO ECI-PASSWORD. 
      * 
             MOVE "aaaa"    TO ECI-ABEND-CODE. 
             SET ECI-COMMAREA TO ADDRESS OF COMMAREA 
      *      SET  ADDRESS OF COMMAREA TO ECI-COMMAREA. 
             MOVE  LENGTH  OF COMMAREA TO ECI-COMMAREA-LENGTH. 
             DISPLAY "COBOL.COMMAREA.LENGTH=" ECI-COMMAREA-LENGTH. 
             MOVE 00    TO ECI-TIMEOUT. 
             MOVE ZERO    TO ECI-SYS-RETURN-CODE. 
             MOVE ZERO   TO ECI-EXTEND-MODE. 
             MOVE ZERO   TO ECI-WINDOW-HANDLE. 
             MOVE ZERO   TO ECI-SEM-HANDLE. 
             MOVE ZERO   TO ECI-MESSAGE-ID. 
             MOVE ZERO   TO ECI-MESSAGE-QUALIFIER. 
             MOVE ZERO   TO ECI-LUW-TOKEN. 
             MOVE "sys1" TO ECI-SYSID. 
             MOVE 1   TO ECI-VERSION. 
             MOVE "P390" TO ECI-SYSTEM-NAME. 
             MOVE 1      TO CICS-ECI-SYSTEM-MAX. 
      *       SET   ECI-CALLBACK TO  ENTRY P0. 
             SET   ECI-CALLBACK TO  NULL. 
       
             MOVE "P390SNA " TO ECI-SYSTEM-NAME. 
             MOVE "user2 " TO ECI-USERID2. 
             MOVE "ps2 " TO ECI-PASSWORD2. 
 
             MOVE "This is the commarea for cics ECI-ASYNC." 
                   TO SEND-DATA. 
             MOVE " " TO REC-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             MOVE 1   TO ECI-MESSAGE-QUALIFIER. 
             MOVE "001" TO MSG-QUAL. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
 
             MOVE "This is the commarea for cics ECI-ASYNC." 
                   TO SEND-DATA. 
             MOVE " " TO REC-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             MOVE 2   TO ECI-MESSAGE-QUALIFIER.  
             MOVE "002" TO MSG-QUAL. 
             MOVE ZERO   TO ECI-LUW-TOKEN. 
             SET ECI-LUW-NEW TO TRUE.  
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
               
             MOVE "This is the commarea for cics ECI-ASYNC." 
                   TO SEND-DATA. 
             MOVE " " TO REC-DATA. 
             SET ECI-ASYNC                     TO TRUE. 



 

Elastic COBOL Programmer’s Guide 92 

             MOVE 3   TO ECI-MESSAGE-QUALIFIER. 
             MOVE "003" TO MSG-QUAL. 
             MOVE ZERO   TO ECI-LUW-TOKEN. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
          
             MOVE "This is the commarea for cics ECI-ASYNC." 
                   TO SEND-DATA. 
             MOVE " " TO REC-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             MOVE 4   TO ECI-MESSAGE-QUALIFIER. 
             MOVE "004" TO MSG-QUAL. 
             MOVE ZERO   TO ECI-LUW-TOKEN. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
 
             MOVE "This is the commarea for cics ECI-ASYNC." 
                   TO SEND-DATA. 
             MOVE " " TO REC-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             MOVE 5   TO ECI-MESSAGE-QUALIFIER. 
             MOVE "005" TO MSG-QUAL. 
             MOVE ZERO   TO ECI-LUW-TOKEN.  
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
 
             MOVE "This is the commarea for cics ECI-ASYNC." 
                   TO SEND-DATA. 
             MOVE " " TO REC-DATA. 
             SET ECI-ASYNC                     TO TRUE. 
             MOVE 6   TO ECI-MESSAGE-QUALIFIER. 
             MOVE "006" TO MSG-QUAL. 
             MOVE ZERO   TO ECI-LUW-TOKEN. 
             CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
             DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
             DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
             DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
    
            SET ECI-CALLBACK TO ENTRY P1. 
            MOVE "This is the commarea for cics ECI-GET-REPLY." 
                  TO SEND-DATA. 
            MOVE " " TO REC-DATA. 
            DISPLAY "COMMAREA " COMMAREA.  
            SET ECI-GET-SPECIFIC-REPLY                 TO TRUE. 
            MOVE 3 TO ECI-MESSAGE-QUALIFIER. 
            MOVE ZERO   TO ECI-LUW-TOKEN.            
            CALL 'CICSEXTERNALCALL' USING ECI-PARMS. 
            DISPLAY "ECI-SYS-RET-Code= " ECI-SYS-RETURN-CODE. 
            DISPLAY "ECI-ABEND-CODE= " ECI-ABEND-CODE. 
            DISPLAY "Commarea returned from P390/CICS= " COMMAREA. 
 
           STOP RUN. 
       P1. 
            MOVE "ABC" TO D. 
            DISPLAY " P1 entered ". 



 

Elastic COBOL Programmer’s Guide 93 

IMS Client  

Requirements 

1. OTMA installed and configured on OS390 using IMS TCPIP OTMA 
Connection User's Guide and Reference, ITOCUG0021-3 from IBM. 

2. TCPIP connection to  S/390 

Overview 

The IMS TCP/IP OTMA Connection (IMS TOC) is a TCP/IP server that 
enables TCP/IP clients to exchange messages with IMS OTMA. This server 
provides communication linkages between TCP/IP clients and IMS (data 
stores) on the OS/390 platform. Response messages from the IMS (data 
stores) are passed back to the originating TCP/IP clients. 

COBOL programs using the IMS protocol in Elastic COBOL use the IMS 

TOC Connector for Java to send and receive data from IMS (data stores). 

 
 
 



 

Elastic COBOL Programmer’s Guide 94 

Elastic COBOL IMS Client support uses a file "interface" to send and receive 
data from IMS. An IMS "file" is opened I-O and uses READ/WRITE to send 
or receive IMS transaction data.  A data record sent to IMS is dependent on 
the OTMA exit routine used to process the input/output to or from IMS.  

The COBOL Client WRITEs to IMS contain all of the transaction input in one 
"record". COBOL Client READs  contain only one IMS message segment 
per record. Additional COBOL Client READs are required to receive  the 
entire transaction output.   

An example of a COBOL program using the HWSSMPL0 exit is provided for 
reference. HWSSMPL0 is an OTMA supplied exit. 

OTMA configuration file 

*************************************************** 
* IMS TOC EXAMPLE CONFIGURATION FILE 
*************************************************** 
HWS (ID=HWS1,RACF=N) 
TCPIP (HOSTNAME=P390,RACFID=P390,PORTID=(9999),EXIT=(HWSSMPL0)) 
DATASTORE  
(ID=TEDS,GROUP=IMSGROUP,MEMBER=TEDSMEM,TMEMBER=IMS61CR1) 
Program Example 
000100 IDENTIFICATION DIVISION.                                                        
000200 PROGRAM-ID.                                                                     
000300     IMSCLIENT.                                                                    
004100 ENVIRONMENT DIVISION.                                                           
004200 CONFIGURATION SECTION.                                                          
004300 SOURCE-COMPUTER.                                                                
004400     XXXXX082.                                                                   
004500 OBJECT-COMPUTER.                                                                
004600     XXXXX083.                                                                   
004700*                                                                                 
004800 INPUT-OUTPUT SECTION.                                                           
004900 FILE-CONTROL.                                                                   
005900     SELECT SQ-FS1                                                                
006000            ACCESS MODE IS SEQUENTIAL                                             
006100            SEQUENTIAL                                                            
006200            ASSIGN TO                                                             
006300     "ims://p390:9999/"                                                           
052410      FILE STATUS IS FILE-FS1-STAT                                                
006400            .                                                                    
006500*                                                                                 
006600*                                                                                 
006700 DATA DIVISION.                                                                  
006800 FILE SECTION.                                                                   
009200 FD  SQ-FS1                                                                       
009400                .                                                                
009500 01  IMS-OUTPUT.                                                                 
          05 IC-HEADER. 
             15 IC-TOTAL-LENGTH              PIC S9(5) COMP-5. 
          05 IC-PREFIX. 
             15 IC-PREFIX-LENGTH             PIC S9(2) COMP-5. 
             15 IC-FLAGS-ZZ                  PIC 9(2) BINARY VALUE 0. 
             15 IC-IDENTIFIER                PIC X(8). 
             15 IC-RESERV1                   PIC 9(8) BINARY VALUE 0. 
             15 IC-RESERV2                   PIC 9(8) BINARY VALUE 0. 
             15 IC-CLIENT-ID                 PIC X(8). 
             15 IC-FLAG1                     PIC X(1)   VALUE 0. 
             15 IC-COMMIT-MODE               PIC X(1)   VALUE 0. 



 

Elastic COBOL Programmer’s Guide 95 

             15 IC-SYNC-LEVEL                PIC X(1)   VALUE 0. 
             15 IC-RESPONSE                  PIC X(1)   VALUE 0. 
             15 IC-TRANSACTION-CODE          PIC X(8). 
             15 IC-DATASTORE-ID              PIC X(8). 
             15 IC-LTERM-NAME                PIC X(8). 
             15 IC-RACF-USERID               PIC X(8). 
             15 IC-RACF-GROUP-NAME           PIC X(8). 
             15 IC-PASSWORD                  PIC X(8). 
          05 IC-OUTPUT-DATA. 
             15 IC-OUTPUT-LENGTH          PIC S9(2) COMP-5. 
             15 IC-OUTPUT-FLAG1           PIC X(1) VALUE "0". 
             15 IC-OUTPUT-FLAG2           PIC X(1) VALUE "0". 
             15 IC-OUTPUT-DATA-SEG        PIC X(240). 
          05 IC-END-OUTPUT. 
             15 IC-LAST-SEG               PIC 9(2) BINARY VALUE 4. 
             15 IC-LAST-FLAG              PIC 9(2) BINARY VALUE 0. 
009400                .                                                                
009700 WORKING-STORAGE SECTION.                                                        
052410   01 FILE-FS1-STAT PIC XX.                                                      
009500   01  HEADER-CNT PIC 9(5) COMP-5.                                               
009500   01  PREFIX-CNT PIC 9(5) COMP-5.                                               
009500   01  OUTPUT-CNT PIC 9(5) COMP-5.                                               
009500   01  LSTSEG-CNT PIC 9(5) COMP-5.                                               
009500   01  LOOP-CNT   PIC 9(5) COMP-5 VALUE 0.                                       
009500 01  IMS-INPUT2.                                                                 
009500    05 IN-LTH  PIC 9(2) COMP-5.                                                  
          05 IN-FLAGS-ZZ                  PIC 9(2) BINARY VALUE 0. 
009500    05 IN-DATA PIC X(80).                                                        
009500 01  IMS-INPUT.                                                                  
009500    05 REC-LTH  PIC 9(2) COMP-5.                                                 
          05 REC-FLAGS-ZZ                  PIC 9(2) BINARY VALUE 0. 
009500    05 REC-DATA PIC X(32700).                                                    
009600*                                                                                 
       01  PG-END-OUTPUT. 
           05 PG-LAST-SEG               PIC 9(2) BINARY VALUE 4. 
           05 PG-LAST-FLAG              PIC 9(2) BINARY VALUE 0. 
       01  PART-NUMS. 
          05 PART-N PIC X(30) OCCURS 5 TIMES. 
       01  TRANSACTION-PATTERN. 
          05 TRANSACTION PIC X(8) VALUE "PART ". 
          05 PART-NUMBER PIC X(30). 
009600*                                                                                 
031100 PROCEDURE DIVISION.                                                             
031200*                                                                                 
031300 CCVS1 SECTION.                                                                  
           MOVE 0 TO LOOP-CNT. 
           MOVE "3003802" TO PART-N(1). 
           MOVE "7736847P001" TO PART-N(2). 
           MOVE "7630843P513" TO PART-N(3). 
           MOVE "930331-102" TO PART-N(4). 
           MOVE "60003-118" TO PART-N(5). 
       LOOP0. 
           DISPLAY "LOOP-CNT= " LOOP-CNT. 
051900     OPEN I-O    SQ-FS1. 
           DISPLAY "LOOP-CNT= " LOOP-CNT. 
           ADD 1 TO LOOP-CNT. 
           DISPLAY "Part-N(" LOOP-CNT ")= " PART-N(LOOP-CNT). 
           MOVE LENGTH OF IC-HEADER TO HEADER-CNT. 
           DISPLAY "Header-cnt= " HEADER-CNT. 
           MOVE LENGTH OF IC-PREFIX TO PREFIX-CNT. 
           DISPLAY "Prefix-cnt= " PREFIX-CNT. 
           MOVE LENGTH OF IC-OUTPUT-DATA TO OUTPUT-CNT. 
           DISPLAY "Output-cnt= " OUTPUT-CNT. 



 

Elastic COBOL Programmer’s Guide 96 

           MOVE LENGTH OF IC-END-OUTPUT TO LSTSEG-CNT. 
           DISPLAY "LSTSEG-CNT= " LSTSEG-CNT. 
           MOVE 0 TO IC-TOTAL-LENGTH. 
           ADD  HEADER-CNT TO IC-TOTAL-LENGTH. 
           DISPLAY "IC-TOTAL-LENGTH= " IC-TOTAL-LENGTH. 
           ADD  PREFIX-CNT TO IC-TOTAL-LENGTH. 
           DISPLAY "IC-TOTAL-LENGTH= " IC-TOTAL-LENGTH. 
           ADD  OUTPUT-CNT TO IC-TOTAL-LENGTH. 
           DISPLAY "IC-TOTAL-LENGTH= " IC-TOTAL-LENGTH. 
           ADD  LSTSEG-CNT TO IC-TOTAL-LENGTH. 
           DISPLAY "IC-TOTAL-LENGTH= " IC-TOTAL-LENGTH. 
           MOVE PREFIX-CNT TO IC-PREFIX-LENGTH. 
           MOVE 0  TO IC-FLAGS-ZZ. 
           MOVE "*SAMPLE*" TO IC-IDENTIFIER. 
           MOVE FUNCTION CHAR(1) TO IC-RESERV1. 
           MOVE FUNCTION CHAR(1) TO IC-RESERV2. 
           MOVE "WARPED" TO IC-CLIENT-ID. 
           MOVE FUNCTION CHAR(1) TO IC-FLAG1. 
           MOVE FUNCTION CHAR(1) TO IC-COMMIT-MODE. 
           MOVE FUNCTION CHAR(1) TO IC-SYNC-LEVEL. 
           MOVE FUNCTION CHAR(1) TO IC-RESPONSE . 
           MOVE "PART" TO IC-TRANSACTION-CODE . 
           MOVE "TEDS" TO IC-DATASTORE-ID. 
           MOVE "LTERMNAME" TO IC-LTERM-NAME. 
           MOVE "P390" TO IC-RACF-USERID. 
           MOVE "SYS1" TO IC-RACF-GROUP-NAME. 
           MOVE "PASSWORD" TO IC-PASSWORD. 
           MOVE OUTPUT-CNT TO IC-OUTPUT-LENGTH. 
           MOVE FUNCTION CHAR(1) TO IC-OUTPUT-FLAG1. 
           MOVE FUNCTION CHAR(1) TO IC-OUTPUT-FLAG2. 
           MOVE PG-LAST-SEG        TO IC-LAST-SEG. 
           MOVE PG-LAST-FLAG       TO IC-LAST-FLAG. 
           MOVE PART-N(LOOP-CNT) TO PART-NUMBER. 
           MOVE TRANSACTION-PATTERN TO IC-OUTPUT-DATA-SEG. 
           DISPLAY "IC-TOTAL-LENGTH= " IC-TOTAL-LENGTH. 
           DISPLAY "IC-PREFIX-LENGTH= " IC-PREFIX-LENGTH. 
           DISPLAY "IC-FLAGS-ZZ= " IC-FLAGS-ZZ. 
           DISPLAY "IC-IDENTIFIER= " IC-IDENTIFIER. 
           DISPLAY "IC-RESERV1= " IC-RESERV1. 
           DISPLAY "IC-RESERV2= " IC-RESERV2. 
           DISPLAY "IC-CLIENT-ID= " IC-CLIENT-ID. 
           DISPLAY "IC-COMMIT-MODE= " IC-COMMIT-MODE. 
           DISPLAY "IC-SYNC-LEVEL= " IC-SYNC-LEVEL. 
           DISPLAY "IC-RESPONSE= " IC-RESPONSE. 
           DISPLAY "IC-TRANSACTION-CODE= " IC-TRANSACTION-CODE. 
           DISPLAY "IC-DATASTORE-ID= " IC-DATASTORE-ID. 
           DISPLAY "IC-LTERM-NAME= " IC-LTERM-NAME. 
           DISPLAY "IC-RACF-USERID= " IC-RACF-USERID. 
           DISPLAY "IC-RACF-GROUP-NAME= " IC-RACF-GROUP-NAME. 
           DISPLAY "IC-PASSWORD= " IC-PASSWORD. 
           DISPLAY "IC-OUTPUT-LENGTH= " IC-OUTPUT-LENGTH. 
           DISPLAY "IC-OUTPUT-FLAG1= " IC-OUTPUT-FLAG1. 
           DISPLAY "IC-OUTPUT-FLAG2= " IC-OUTPUT-FLAG2. 
           DISPLAY "IC-OUTPUT-DATA-SEG= " IC-OUTPUT-DATA-SEG. 
           DISPLAY "IC-LAST-SEG= " IC-LAST-SEG. 
           DISPLAY "IC-LAST-FLAG= " IC-LAST-FLAG. 
           DISPLAY "end of ims-otma     " . 
           DISPLAY "lth of IC-HEADER= " LENGTH OF IC-HEADER. 
           DISPLAY "lth of IC-OUTPUT-DATA= " LENGTH OF IC-OUTPUT-DATA. 
           DISPLAY "lth of IC-END-OUTPUT= " LENGTH OF IC-END-OUTPUT. 
           DISPLAY "LOOP-CNT= " LOOP-CNT. 
052400     WRITE   IMS-OUTPUT.                                                         
           DISPLAY "LOOP-CNT= " LOOP-CNT. 



 

Elastic COBOL Programmer’s Guide 97 

052400     MOVE " " TO IMS-OUTPUT.                                                     
           MOVE    " " TO IMS-INPUT. 
           MOVE    80  TO REC-LTH 
           MOVE    FUNCTION CHAR(2) TO REC-FLAGS-ZZ. 
 
       LOOP. 
           DISPLAY "LOOP-CNT= " LOOP-CNT. 
052400     READ    SQ-FS1 INTO IMS-INPUT AT END GO TO END-PGM.                         
           DISPLAY "LOOP-CNT= " LOOP-CNT. 
052400     MOVE    IMS-INPUT TO IMS-INPUT2.                                            
052400     DISPLAY "IN-LTH= " IN-LTH  " IN-FLAGS-ZZ= " IN-FLAGS-ZZ.                    
052400     DISPLAY "IN-DATA= " IN-DATA.                                                
           GO TO LOOP. 
       END-PGM. 
052800     CLOSE   SQ-FS1.                                                             
           DISPLAY "LOOP-CNT= " LOOP-CNT. 
           IF LOOP-CNT > 4 GO TO CLS-PGM. 
           GO TO LOOP0. 
       CLS-PGM. 
 
 
 



 

Elastic COBOL Programmer’s Guide 98 

Chapter 7 – Client/Server Execution  

Overview 

Most COBOL systems have only a single execution environment, the 
application.  There are additional environments, though, officially and 
unofficially recognized, ranging from running within the mainframe CICS 
environment to running within a remote login. 

Elastic COBOL has its own execution environments, environments that 
provide different capabilities to the contained program than the typical 
application.  As Elastic COBOL programs are Java programs for execution 
purposes, several environments for Java programs work with Elastic COBOL 
programs as well. 

Most of these alternate execution environments are for the server, with the 
notable exception of applets.  They may require additional software to setup 
and execute, but they may also provide additional functionality to the 
contained COBOL program. 

In all of these execution environments, applications are generally not simply 
executed, but rather the application is first deployed.  Deployment allows the 
application, Elastic COBOL runtime, and media resources to be merged into 
a single file for simpler distribution and assignment of resources. 

Choose the environment based upon need.  Many applications may be 
executed as simple applications; do not make the program more 
complicated than necessary.  If the program needs to expose a rich user 
interface and operate on the client without installation, then an Applet is 
appropriate.  If the program needs to output HTML to the user, process web 
forms, needs a lightweight user interface, needs a quick startup, then it is 
likely a Servlet candidate.  A CGI program is like a Servlet, but for those web 
servers without Servlet support.  Enterprise JavaBeans, or EJB, is for those 
programs that have complex or highly demanding requirements including 
transaction support, distribution and other advanced infrastructure; EJBs 
often use Servlets as their user interface. 

Applet 

An Applet is a program running within a web browser, or started directly from 
a web browser.  Normally, its main screen is within the browser's page itself.  
It will be started automatically when the end-user browses to the containing 
page, and it will be stopped automatically when the end-user browses away. 

An Applet is downloaded automatically from the server, executing according 
to instructions found in the containing HTML page.  After downloading, it 
executes on the clients browsing machine itself rather than the server. 

Because the applet is executing on the client itself, it has several 
advantages and disadvantages particular to the execution environment.  



 

Elastic COBOL Programmer’s Guide 99 

While on the client, it has very fast response times to commands which do 
not need the network; unlike HTML which may require the server to handle 
data validation, such work may be done on the client without involvement of 
the server.  It can expose a rich user interface, complete with graphical 
screen elements, to the end user.  It can access sockets, files and database 
connections back on the server. 

However, since it's running on the client, there are security restrictions about 
the actions it can do to the client's computer.  It cannot directly access files, 
for reading, writing or deleting.  It cannot access sockets, files or database 
connections aside from the server from which it was downloaded.  It cannot 
access most system properties (environment variable equivalents).  It cannot 
even print to the printer without permission from the end user.  These 
restrictions may be reduced or eliminated by signing the applet with a digital 
signature to allow the end user to trust the applet, but signing is a rare 
requirement for an Applet.  Generally, if the applet needs to be signed, it 
should probably be done through a server mechanism instead.  No native 
code access is allowed from applets.  All code must be in Elastic COBOL or 
Java. 

The applet itself is served from the web server.  It may be kept in the same 
directory as the HTML page containing the reference to the applet.  During 
deployment, an option is given to create default HTML templates for starting 
the program as an applet; use the automatically generated HTML as a 
template, use its contents to incorporate in custom HTML pages designed 
by web designers. 

The applet may run in a Java Virtual Machine (JVM) from the browser 
vendor, or it may operate within the context of a Java Plug-In, an add-on to 
the browser that provides consistent execution independent of the browser's 
implementation.  The Java Plug-In provides a current environment, whereas 
the browser environments may become dated.  For example, the graphical 
screen section requires Java 2 (JDK 1.2) support, so it requires the Java 
Plug-In to function as an Applet.  Note: Netscape 6 and above use the Java 
Plug-In for all applet support. 

An applet during execution normally starts at the same point in the program 
as an application.  Its main window, rather than being a separate window, is 
embedded within the HTML page.  The size of the main window is set by the 
applet tags rather than the program, as HTML sets the boundaries for inline 
applets. 

There is an alternative lifecycle for applets that allows the applet to 
recognize when the applet is created, started, stopped and finally destroyed.  
This usage is now discouraged where not required.  If present, the APPLET-
INIT, APPLET-START, APPLET-STOP and APPLET-DESTROY paragraphs 
will be executed at the appropriate point in the applet's lifecycle. 

SYSOUT and SYSERR are routed to the browser's Java console window 
and should be used only for debugging or logging information, never for 
information vital to the user.  SYSIN is not available.  The CONSOLE will 
function normally in its graphical mode. 



 

Elastic COBOL Programmer’s Guide 100 

Extra frames created may have notification in them that the frame is a Java 
window to allow the user to recognize such windows as originating online; 
this helps prevent spoofing the actions of a legitimate program. 

Servlet 

Servlets run within the context of a web server, with the display run within 
the context of the end-user's web browser.   

The execution is in a controlled environment, so most normal application 
abilities, such as file handling, are present.  The execution environment itself 
is as secure as the surrounding operating system and environment, so 
business processes are not exposed to the end user. 

The only portion of a Servlet exposed to the end user is the user interface, 
generally HTML.  The program is started from HTML, reads its input from 
HTML forms, and sends its output back to the user in the form of HTML. 

The program itself starts when requested to do so by a URL pointing to the 
Servlet, using either the GET or PUT method of data transfer.  The web 
server must be Servlet enabled in order to do this; see the web server 
documentation for information on where to place Servlets for automatic 
activation. 

Once the program starts, it reads its information from the form, processes it, 
and sends information back in the form of another HTML page.  It does so at 
the same time other instances of the same program, and other programs, 
are also operating within the same process.  Each instance that the web 
server creates is its own session with its own data. 

This section does not discuss HTML itself, so a basic knowledge of HTML is 
assumed.  The COBOL programmer creating Servlets will often do so in 
conjunction with a web designer for the HTML content.  The goal of the 
HTML portions of this is to provide enough information to bridge the gap 
from the COBOL programmer's experience to the web designer's 
experience. 

Compiling 

The Servlet API is a standard extension to Java, which means that although 
its usage and interfaces are standardized, it is not included by default with 
Java.  So, the Servlet runtime library must be present in the CLASSPATH as 
well as the normal Elastic COBOL runtime and application classes.  This 
may already be done in the web server, but for test environments either the 
Servlet runtime servlet.jar or jsdk.jar must be present. 

A Servlet may be compiled with a special flag, -out:servlet, so the main 
program is a Servlet itself.  The Servlet classes must be in the classpath for 
this to function.  Or it may be run indirectly, using 
com.heirloomcomputing.ecs.run.servlet as the main program, with an init 
parameter 'program' pointing to the main application class; this method 
requires only the Servlet runtime to execute. 



 

Elastic COBOL Programmer’s Guide 101 

Executing 

The HTML to execute the Servlet must contain a tag pointing to the 
program.  An example pointing to the local machine for the program register 
follows: 

<form action="http://127.0.0.1:8080/servlet/register" method="post"> 

A GET action is the default, and can be performed even from the browser's 
URL line.  For example, if the program 'simple' were on the host 
myhost.com, then typing 'http://www.myhost.com/servlet/simple' would 
activate the Servlet. 

A program may either be a traditional program, where there is only one 
control path for all forms of execution, or it may use special paragraph 
names to indicate when each portion of code should be executed.  The more 
common special paragraph names are as follows: 

 

SERVLET-INIT This is called only once, when the Servlet is initially 
loaded. 

SERVLET This is called for either GET or POST transactions. 
SERVLET-GET This is called for GET method transactions. 
SERVLET-POST This is called for POST method transaction. 

 

If there is no application reason to distinguish between GET and POST, 
accepting either offers more flexibility for the web designer and testing. 

Some additional less commonly used special paragraph names are also 
available.  Most programmers will not require the use of these paragraphs, 
but they are available for completeness of information. 

SERVLET-PUT This activates only when the browser sends a PUT 
message. 

SERVLET-DELETE This activates only when the browser sends a 
DELETE message. 

SERVLET-OPTIONS This activates only when the browser sends an 
OPTIONS message. 

SERVLET-TRACE This activates only when the browser sends a 
TRACE message. 

SERVLET-LAST-MODIFIED Return the last known modification time in RETURN-
CODE.  This is handled automatically, so override 
only if necessary. 

Retrieving User Data 

Once the program is executing, all but the simplest output program will 
require data from the user.  It may be something as simple as a zip code, or 
as complex as a shopping cart order.  This data will come through the HTML 
form and will already be present at the time the program starts to execute. 

The data may be entirely processed before data is sent back to the user, so 
interactions are spread between multiple Servlets.  The HTML generated by 



 

Elastic COBOL Programmer’s Guide 102 

a Servlet may always point to another Servlet for next execution, the 
conceptual 'Next' on the HTML page. 

Sending Response Data 

In Elastic COBOL, the normal display device used for the DISPLAY 
statement without an UPON clause is the graphical console on graphical 
systems or the text terminal on text systems.  In a Servlet, however, the 
default display device when no UPON clause is present is the browser's 
HTML input stream.  So a DISPLAY "Hello World" will be displayed in the 
browser, as will a DISPLAY "Hello World" UPON SERVLET-OUT.  A 
DISPLAY "Hello World" UPON CONSOLE will work in many cases, but will 
not have the intended effect; it would go to the server's version of the 
console.  A DISPLAY UPON SYSOUT or SYSERR will generally be 
redirected to a web server or Servlet runner log file, and so they are suitable 
for logging server messages. 

These responses are stored in the configuration space for the program and 
may be retrieved in the same manner as configuration properties, system 
properties, and specified environment variables.  The simplest method to 
retrieve these responses is ACCEPT identifier FROM CONFIGURATION 
configuration-name.  The configuration-name may include additional data in 
the name, such as parameter names from the form.  In a similar manner, the 
modifiable configuration-names may be set using DISPLAY value UPON 
CONFIGURATION configuration-name. 

All special configuration-names for Servlets begin with either SERVLET- or 
HTTP-.  The following configuration-names are recognized only in Servlets. 

 

Servlet Get Configuration Names Description 
SERVLET-PARAMETER-x Obtain parameter x of request; x is generally a form 

variable name. 
SERVLET-SESSION-PARAMETER-x Obtain session parameter x of request; used to store 

and retrieve session persistent info. 
SERVLET-QUERY-STRING Obtain the query string used to obtain this Servlet. 
SERVLET-COOKIES Count of number of cookies available. 
SERVLET-COOKIE-x  Obtain cookie number x. 
SERVLET-ATTRIBUTE-x Obtain value of named attribute x. 
SERVLET-METHOD Obtain HTTP method for this request, generally GET 

or POST.  
SERVLET-REQUEST-URI Obtain part of request's URI to left of query string. 
SERVLET-PATH Obtain part of request URI specifying the Servlet. 
SERVLET-PATH-INFO Obtain optional extra path info before query string. 
SERVLET-PATH-TRANSLATED Obtain optional extra path info before query string, 

translated to a real path. 
SERVLET-REMOTE-USER Obtain user name generating this request. 
SERVLET-AUTH-TYPE Obtain authentication scheme for this request. 
SERVLET-HEADER-x  Obtain header x of request. 
SERVLET-REQUESTED-SESSION-
ID 

Obtain identifier for this session. 

SERVLET-REQUESTED-SESSION-
ID-VALID 

Obtain 1 if session is valid, 0 if invalid. 

SERVLET-REQUESTED-SESSION-
ID-FROM-COOKIE 

Obtain 1 if request's session id came from cookie, 0 
if not. 

SERVLET-REQUESTED-SESSION- Obtain 1 if request's session id came from URL, 0 if 



 

Elastic COBOL Programmer’s Guide 103 

Servlet Get Configuration Names Description 
ID-FROM-URL not. 
SERVLET-CONTENT-LENGTH Obtain size of data, -1 if unknown. 
SERVLET-CONTENT-TYPE  Obtain mime type of request data. 
SERVLET-PROTOCOL Obtain the <protocol>/<major>.<minor> of the 

request. 
SERVLET-SCHEME   Obtain the protocol scheme, such as http or https. 
SERVLET-SERVER-NAME  Obtain the host name of the server. 
SERVLET-SERVER-PORT Obtain the host port of the server. 
SERVLET-REMOTE-ADDR Obtain address of the client. 
SERVLET-REMOTE-HOST Obtain host name of the client. 
SERVLET-CHARACTER-ENCODING Obtain character set encoding for input of request. 
SERVLET-SESSION-CREATION-
TIME 

Obtain time session was created. 

SERVLET-SESSION-ID Obtain serve’s session id. 
SERVLET-SESSION-LAST-
ACCESSED-TIME 

Obtain last time session was accessed. 

SERVLET-SESSION-NEW Obtain 0 if session is new session, 1 if client is 
already bound. 

SERVLET-CONTAINS-HEADER-x  Obtain 1 is Servlet response contains header x, 0 
otherwise. 

SERVLET-SESSION-MAX-
INACTIVE-INTERVAL 

Obtain maximum inactive time for session. 

SERVLET-SESSION-ATTRIBUTE-x Obtain session attribute x. 
SERVLET-CONTAINS-HEADER-x  Obtain 1 if Servlet contains header x, 0 otherwise. 
SERVLET-ATTRIBUTE-x  Obtain Servlet attribute x. 
SERVLET-INIT-PARAMETER-x  Obtain value of Servlet initialization parameter x. 
SERVLET-NAME  Obtain name of Servlet. 

    
Servlet Set Configuration Names Description 
SERVLET-REDIRECT  Redirect user HTML page to value. 
SERVLET-STATUS-x  Set status x with message value. 
SERVLET-CONTENT-LENGTH Set content length of HTML response. 
SERVLET-CONTENT-TYPE  Set content type of HTML response. 
SERVLET-SESSION-PARAMETER-x  Set session parameter to value. 
SERLVET-SESSION-MAX-
INACTIVE-INTERVAL 

Set maximum inactive time for session. 

SERVLET-SESSION-ATTRIBUTE-x  Set Servlet session attribute x to value. 
SERVLET-SESSION-INVALIDATE Invalid Servlet session. 

EXEC HTML 

There is a special EXEC command, EXEC HTML, for sending HTML to the 
browser's HTML input stream.  In a Servlet, it will automatically use 
SERVLET-OUT, while in CGI discussed later, it will use SYSOUT.  For more 
information on EXEC HTML, see HTML in the user interface chapter. 

EXEC HTML supports direct embedding of HTML code into Elastic COBOL 
programs. There are two main formats to this extension.  

Format 1: 

EXEC HTML  

Html-text-1  

END-EXEC   



 

Elastic COBOL Programmer’s Guide 104 

Format 2: 

EXEC PAGE-HTML  

Html-text-1  

END-EXEC  

EXEC HTML, in both variants, outputs its Html-text-1 to SYSOUT.  This 
output is then processed by an HTTP web server, and sent to the client’s 
browser window in HTML format.  This must be properly formatted HTML in 
order to be received properly; no validation of HTML occurs.  Html-text-1 
may span several lines. 

Format 2 outputs the following text before Html-text-1:  

Content-type: text/html  

Content-length: length-of-html-text-1  

<blank line> 

This format 2 output is more proper for text pages and will automatically 
calculate the length of the text being sent.  It cannot, however, be used to 
continue an HTML page already started by another EXEC HTML. 

HOSTVAR tag  

In addition to standard HTML, there is an extra HTML tag supported by 
Elastic COBOL, the HOSTVAR tag.  The HOSTVAR tag replaces its tag with 
the contents of an execution host variable used prior to sending data to 
SYSOUT.  

The format of the HOSTVAR tar is as follows: 

 

<HOSTVAR NAME=host-variable-name>  

text-skipped-by-ElasticCOBOL 

</HOSTVAR> 

 

Host-variable-name must be an alphanumeric, alphanumeric-edited, 
alphabetic, numeric, or numeric-edited identifier. 

For proper viewing, numeric identifiers should be of USAGE DISPLAY. The 
HOSTVAR tag must be contained completely on one line.  

The text-skipped-by-ElasticCOBOL will not be displayed when this HTML is 
executed through Elastic COBOL, but it will be displayed if the same HTML 
code is displayed through another means. It could, for example, include a 
warning that the HTML code is intended to be executed from Elastic 
COBOL.   

The sample program html.cob shows the use of the EXEC HTML and 
HOSTVAR tag.  A Web Server is not required to see its output. 



 

Elastic COBOL Programmer’s Guide 105 

CGI 

CGI, or Common Gateway Interface, programs were the first common way 
to write programs capable of outputting HTML to the web and acting on the 
data input from forms.  While Elastic COBOL programs may act as CGI 
programs, the usage is discouraged in favor of Servlets. 

CGI requires a separate process for each transaction, with its own startup 
time, its own memory space, and its own tear down time.  Servlets require 
only a thread for each transaction, with minimal startup, memory and tear 
down requirements. 

CGI does not have the ability to readily save state.  Servlets can readily save 
state from one execution to the next. 

CGI programs do have the ability to execute in web server environments that 
do not support Servlets directly, but this time is almost always better spent in 
setting up the Servlet container for the web server instead and then 
executing the Elastic COBOL programs as Servlets. 

CGI and Servlets use the same programming model.  Both can output HTML 
to SERVLET-OUT, or use EXEC HTML to embed HTML content within the 
program.  Both can access parameters from forms. 

To start a program as a CGI program, setup the web server for CGI 
according to its directions.  Then setup a batch or script file to execute the 
Elastic COBOL program using the following line: 

Windows: 

java -DREQUEST_METHOD="%REQUEST_METHOD%" -
DCONTENT_LENGTH="%CONTENT_LENGTH%" -
DQUERY_STRING="%QUERY_STRING%" -cp ecobol.jar;. AA 

Posix: 

java -DREQUEST_METHOD="$REQUEST_METHOD" -
DCONTENT_LENGTH="$CONTENT_LENGTH" -
DQUERY_STRING="$QUERY_STRING" -cp ecobol.jar:. AA 

 

Instead of java, use whatever java command is required for the system.  
Specify the full path to ecobol.jar if necessary, or include any additional third-
party runtime that may be required by your application.  Replace AA with the 
application's program .class name, not including the .class extension; be 
sure to include the applications path in the classpath specified after -cp. 



 

Elastic COBOL Programmer’s Guide 106 

RMI 

RMI is Remote Method Invocation.  It is the standard mechanism by which 
remote procedure calls are done within the Java environment.  When 
functions should be centrally defined or administered, RMI can offer a 
relatively simple means of exporting and using remote functionality. 

Coverage of RMI as it relates to Elastic COBOL is found in Chapter 2 in 
COBOL to COBOL Remote, COBOL to Java Remote, and Java to COBOL 
Remote sections. 

Enterprise JavaBeans 

Elastic COBOL Enterprise JavaBeans involves programming constructs 
related to building Enterprise Java Beans. Elastic COBOL adds features that 
extend standard COBOL-85 and offers functional capabilities that are not 
defined as part of the COBOL standard. 

Note: Heirloom’s Elastic Transaction Platform will compile and generate 
Enterprise Java Beans from CICS COBOL programs. 

Introduction 

The EJB Container used in this sample is JBoss, a freely available EJB 
Container available at http://www.jboss.org.  This Enterprise JavaBeans 
(EJB) Guide follows the JBoss tutorial found at 
http://www.jboss.org/documentation/jboss_win32_1.html. 

EJB Terms 

Term Description Example 
EnterpriseBean Contains the business logic InterestBean 
EJB Client User of business logic InterestClient 
EJBObject Client view of the EJB Component Interest 
EJBHome Used by Client to obtain the EJBObject. InterestHome 
JNDI Java naming and directory interfaces; 

used to obtain EJBHome 
 

 

http://www.jboss.org/
http://www.jboss.org/documentation/jboss_win32_1.html


 

Elastic COBOL Programmer’s Guide 107 

Component Overview 

EJB's are server side components in a standard format available for use by 
clients, which may include applications, applets, Servlets and other EJBs.   

To execute the EJB sample, an EJB Container, EJB Component and EJB 
Client are required.  The EJB Container used in this example is JBoss, a 
freely available EJB Container; other EJB Containers will be the same for 
coding, but may differ in setup and the values for the environment variables. 

The EJB Container provides the distributed business object framework.  It 
provides services to the EJB Component, allowing it to concentrate on the 
business functionality rather than the developing a custom distributed 
framework.  An EJB Container can provide additional services such as 
transparently allowing a failed object to be replaced by a successful one.  
Because the Java platform is cross-platform, it can even allow transparent 
access of a bean to be split among different operating systems.  There are 
many EJB Containers, each with its own set of strengths.  Some concentrate 
on cross-platform issues, some on interoperability, some on wireless clients, 
etc. 

The EJB Component provides the business functionality to remote clients.  
This EJB component may be written in Elastic COBOL or Java. 

The EJB Client uses an EJB Component.  The EJB Client may be written in 
Elastic COBOL or Java.  If the EJB container supports it, it may also include 
additional access methods such as wireless protocols or COM. 



 

Elastic COBOL Programmer’s Guide 108 

Java Naming Directory Interface 

Client Settings Description 

Java.naming.factory.initial Class used to lookup EJBs by name 

Java.naming.provider.url Informs lookup class where to located naming service 

EJB Execution Process 

 Copy EJB Component to server deploy directory 

 Start Server 

 Start Client 

Install JBoss 

Installation of JBoss follows the instructions available at the JBoss site for 
Win32 or Unix. 

An additional note is that the Elastic COBOL runtime, ecobol.jar, must be 
found by EJB Container for Elastic COBOL EJB Components to function.  
This may be done in the deploy tool, which can combine an application such 
as an EJB Component with the Elastic COBOL runtime into a single 
deployable .jar file, or it may be done by adding ecobol.jar to the EJB 
Container's CLASSPATH.  If added to the CLASSPATH of the EJB 
Container, the EJB Component .jar file does not need to include the 
contents of ecobol.jar; if not added to the CLASSPATH, then the deployment 
must combine ecobol.jar with the applications classes. 

The EJB Container should execute normally before proceeding. 

Creating the Enterprise JavaBean Component 

In this step we will write and compile a simple Enterprise JavaBean.  The 
example -- which is called 'Interest' -- is about as simple as an EJB can get: 
it is a 'stateless session bean'.  Its job is to calculate the amount of 
compound interest payable on a sum of money borrowed over a specified 
term with a specified interest rate. 

This example looks like it may have a number of lines of code, but most of it 
is purely structural, identical for all EJB Components created for a particular 
EJB Container.  In fact, there is only one functional line of code in the whole 
package. 

Create a new project in the IDE or directory for command line use.  The 
directory '\ecobol\samples\ejb\server' will be used in this text. 

Generally, EJB components are deployed in packages.  A package is 
separate namespace for an application preventing names of programs from 
conflicting with one another.  A package may be specified in one of three 



 

Elastic COBOL Programmer’s Guide 109 

ways; in the program source, in the IDE when compiling in the IDE, or on the 
command line when compiling from the command line.   

In this case package will be 'com.web_tomorrow.interest'.  This sample 
places the package name in the program source.  It may be removed and 
done at compile time if desired.  This means that Elastic COBOL will use the 
-package compiler option or package field in the Project|ecobol|COBOL 
Properties in the IDE.  

An Enterprise JavaBean has a minimum of one class and two interfaces. 

 The EJB Component or Bean class.  This implements the 
methods specified by the remote interface.  In this example, the Bean 
class is 'com.web_tomorrow.interest.InterestBean'. 

 The remote interface.  This is the class that exposes methods of 
the Bean to the outside world.  In the example, the remote interface is 
the class 'com.web_tomorrow.interest.Interest'.  Only the methods 
specified in this interface may be called from remote. 

 The home interface.  This specifies how a new bean is created, 
managed and deleted.  The methods in the home interface depend on 
the type of bean.  A stateless session bean has exactly one create 
method.  In this example, the home interface is 
'com.web_tomorrow.InterestHome'. 

Of course, a Bean can include other classes, other programs, or even other 
packages, but the classes listed above are the minimum.  The classes must 
be packaged into a JAR, a Java Archive, with a directory structure which 
reflects the hierarchy of packages.  The Elastic COBOL deploy tool may be 
used to create the actual JAR file, but the directory layout needs to be done 
first.  In this example, the classes are in the package 
com.web_tomorrow.interest, so they need to be in the directory 

\ecobol\samples\ejb\server\com\web_tomorrow_interest 

Elastic COBOL will create this directory automatically from the COBOL 
source files if the package option is used.  In Elastic COBOL, packages are 
created in the directory described by the package below the source file 
directory.  There also needs to be a directory called META-INF to store the 
deployment descriptor (always called ejb-jar.xml) and, optionally, another 
XML file to tell the server about name mappings.  With JBoss, this file must 
be called jboss.xml. 

So, before writing the classes, we need a directory structure like this: 

\ecobol\samples\ejb\server 

.cob files are compiled here with -package option, yielding .java and .class files 
below 

com 

        web_tomorrow 

              interest 

              .java and .class files are compiled to here 

META-INF 



 

Elastic COBOL Programmer’s Guide 110 

            ejb-jar.xml 

            jboss.xml 

If the deploy tool has the \ecobol\samples\ejb\server directory files added, 
the directory structure will be complete.  The visible files to be deployed 
should begin with com/ or META-INF/. 

Of course, in a custom project rather than this sample project, the directory 
\ecobol\samples\ejb\server would be replaced with a custom directory 
structure representing the project and company.  The standard for package 
names is the reverse of the company URL; that is if the web site is 
www.mycompany.com, then the project ‘myproject’ at that company would 
be in package com.mycompany.myproject 

Coding the Classes and Interfaces 

We need one class, the Bean itself, and two glue interfaces, the remote 
interface and the home interface.  All the '.java' files are compiled into the 
subdirectory .\com\web_tomorrow\interest. 

The interfaces have no method body, but rather only a definition of what 
methods are guaranteed to be present in any class implementing the 
interface.  Using an interface is like using a class; the object is actually an 
instance of a class, but when accessing it via an interface, only the interface 
methods can be used. 

In this case, the interface specifies the methods exposed to the EJB client, 
and the allowed method of creating the bean. 

Remote Interface 

The remote interface in this example is very simple. 

 
* This example is coded for the JBoss EJB Container.  The naming 
* provider and setup information may differ for other  
* EJB Containers. 
* The logic flow remains the same. (http://www.jboss.org) 
* 
* This example requires J2EE.  JDK 1.2+ plus JBoss is sufficient. 
* 
* The CLASSPATH to compile must include \jboss\lib\ext\ejb.jar in 
* addition to the ecobol.jar required for any COBOL program. 
* 
* Set the package name; this could be done from the command line 
* using the '-package name' directive instead.  Setting a package 
* is generally not necessary for an EJB, but it's good practice. 
 
$SET PACKAGE com.web_tomorrow.interest 
 
* 
* An INTERFACE-ID is the same as a CLASS-ID, but without any 
* method definitions.  No special-names, no data other than 
* linkage, and nothing in the procedure division other than 
* the procedure division using is allowed.  This defines a 
* contract which another class-id program may implement. 

http://www.mycompany.com/


 

Elastic COBOL Programmer’s Guide 111 

* 
 
IDENTIFICATION DIVISION. 
INTERFACE-ID. "Interest" INHERITS "javax.ejb.EJBObject". 
 
* Define one method with three parameters which is capable 
* of throwing a RemoteException. 
 
METHOD-ID. "calculateCompoundInterest" THROWS "java.rmi.RemoteException". 
DATA DIVISION. 
LINKAGE SECTION. 
 77 principle COMP-2. 
 77 rate COMP-2. 
 77 periods COMP-2. 
 77 result COMP-2. 
* 
* The BY VALUE clause forces the Java-style usage of a variable; 
* this means that COMP-2 will be a Java 'double' floating point 
* in the definition.  A BY REFERENCE or BY CONTENT is suitable 
* for communication with other Elastic COBOL programs, but for any 
* interface or class which will have Java accessors, the BY VALUE 
* is simpler. 
* 
 
PROCEDURE DIVISION USING BY VALUE principle, rate, periods GIVING result. 
END-METHOD. 
 
END-INTERFACE. 

 

The remote interface specifies only one 'business method' called 
calculateCompoundInterest.  This is the list of business methods available to 
any clients. 

Home Interface 

The home interface is even simpler.  The home interface describes the 
creation method. 

* This example is coded for the JBoss EJB Container.  The  
* naming provider and setup information may differ for other  
* EJB Containers. 
* The logic flow remains the same. (http://www.jboss.org) 
* 
* This example requires J2EE.  JDK 1.2+ plus JBoss is sufficient. 
* 
* The CLASSPATH to compile must include \jboss\lib\ext\ejb.jar in 
* addition to the ecobol.jar required for any COBOL program.   
* This is the javax.ejb.* package; its location may vary in  
* other EJB vendors. 
* 
* Set the package name; this could be done from the command line 
* using the '-package name' directive instead.  Setting a package 
* is generally not necessary for an EJB, but it's good practice. 
 
$SET PACKAGE com.web_tomorrow.interest 
 
* 
* An INTERFACE-ID is the same as a CLASS-ID, but without any 
* method definitions.  No special-names, no data other than 
* linkage, and nothing in the procedure division other than 
* the procedure division using is allowed.  This defines a 



 

Elastic COBOL Programmer’s Guide 112 

* contract which another class-id program may implement. 
* 
 
IDENTIFICATION DIVISION. 
INTERFACE-ID. "InterestHome" INHERITS "javax.ejb.EJBHome". 
* 
* Only a create method is necessary to define for this interface, 
* allowing the client to create the Enterprise JavaBean. 
* 
METHOD-ID. "create" THROWS "java.rmi.RemoteException", "javax.ejb.CreateException". 
DATA DIVISION. 
LINKAGE SECTION. 
    77 result OBJECT REFERENCE "com.web_tomorrow.interest.Interest". 
PROCEDURE DIVISION GIVING result. 
END-METHOD. 
 
END-INTERFACE. 

 

EJB Class 

Finally there is the Bean class.  This is the only one that does any real work 
in this simple example. 

 

* This example is coded for the JBoss EJB Container.  The naming 
* provider and setup information may differ for other EJB 
* Containers. 
* 
* The logic flow remains the same. (http://www.jboss.org) 
* 
* This example requires J2EE.  JDK 1.2+ plus JBoss is sufficient. 
* 
* The CLASSPATH to compile must include \jboss\lib\ext\ejb.jar in 
* addition to the ecobol.jar required for any COBOL program.  This 
* is the javax.ejb.* package; its location may vary in other EJB 
* vendors. 
* 
* Set the package name; this could be done from the command line 
* using the '-package name' directive instead.  Setting a package 
* is generally not necessary for an EJB, but it's good practice. 
 
$SET PACKAGE com.web_tomorrow.interest 
 
* 
* This class-id program is the main Enterprise JavaBean.   
* It contains the business logic which is exposed to the outside 
* world and enough hooks to allow the EJB Container to control  
* the bean. 
*  
* A SessionBean is a particular type of EJB; this is the type most 
* corresponding to a CICS transaction and the type most COBOL  
* programs will implement. 
* 
* A SessionBean is a logic bean; an EntityBean is a data bean. 
 
IDENTIFICATION DIVISION. 
CLASS-ID. "InterestBean" IMPLEMENTS "javax.ejb.SessionBean". 
 
* IDENTIFICATION DIVISION. is optional for a method-id. 
 



 

Elastic COBOL Programmer’s Guide 113 

METHOD-ID. "calculateCompoundInterest". 
 
DATA DIVISION. 
LINKAGE SECTION. 
    01 principle COMP-2. 
    01 rate      COMP-2. 
    01 periods   COMP-2. 
    01 result    COMP-2. 
 
* 
* This is the business method exposed to any EJB client. 
* 
* This example uses COMP-2, which is double precision floating 
* point, rather than the more traditional COBOL types of fixed 
* point arithmetic which would really be more appropriate.  The 
* COMP-2 is used in this case so the signature of the method 
* would exactly match the original Java program.  The BY VALUE 
* forces normal Java types rather than COBOL types; this is 
* the best practice for use in classes which may interact with 
* other Java programs.  To keep exact datatypes, it's recommended 
* to use PIC X(n) variables and move the values to the desired 
* types; this translates to the Java String type which would 
* both keep precision and is easy to use from Java as well as 
* COBOL. 
* 
 
PROCEDURE DIVISION USING BY VALUE principle, rate, periods GIVING result. 
MAIN-PARAGRAPH. 
 
* The DISPLAY UPON SYSOUT goes to the main log file of the  
* EJB Container. This may just be printed on the EJB Container  
* sysout.  It will _not_ * be visible to the client.  Only the  
* GIVING result piece will be returned and made visible to the 
* client. 
     
    DISPLAY "Someone called 'calculateCompoundInterest' in Elastic COBOL!"  
        UPON SYSOUT 
    DISPLAY " principle=" principle  
        UPON SYSOUT 
    DISPLAY " rate     =" rate  
        UPON SYSOUT 
    DISPLAY " periods  =" periods  
        UPON SYSOUT 
 
* There are other ways of computing this, but this example 
* demonstrates the similarities between the Java and COBOL  
* implementations of EJBs. 
     
    COMPUTE result = principle * ((1+rate) ** periods) - principle 
     
    DISPLAY " result   =" result  
        UPON SYSOUT 
    DISPLAY " formula is principle*((1+rate)**periods)-principle"  
        UPON SYSOUT 
    . 
     
END-METHOD. 
 
* Many EJB's can just copy the remaining code into their code. 
* 
* All remaining methods in this class are structural methods, 
* necessary not for the business logic but rather for the EJB 
* Container to be able to control this bean. 



 

Elastic COBOL Programmer’s Guide 114 

* 
* Add in some DISPLAY UPON SYSOUT's to the procedure division 
* of the methods in order to gain some feel over when these 
* methods are called. 
* 
* We are given the session context, but we don't need it in this 
* program so we ignore it.  This method is required to fulfill 
* the interface of javax.ejb.SessionBean. 
* 
 
METHOD-ID. "setSessionContext". 
DATA DIVISION. 
LINKAGE SECTION. 
    01 sc OBJECT REFERENCE "javax.ejb.SessionContext". 
 
PROCEDURE DIVISION USING BY VALUE sc. 
END-METHOD. 
 
* The following methods are required to fulfill the interface 
* of javax.ejb.SessionBean.  We don't need to do anything special, 
* though, so we just create the method without a body.  When 
* the method has no parameters and no result, this is the barest 
* possible method definition. 
 
METHOD-ID. "ejbCreate". END-METHOD. 
METHOD-ID. "ejbRemove". END-METHOD. 
METHOD-ID. "ejbActivate". END-METHOD. 
METHOD-ID. "ejbPassivate". END-METHOD. 
 
END-CLASS. 
 

Notice that most of the methods are empty; they have to exist because 
they're specified by the SessionBean interface, but they don't need to do 
anything in this case. 

This example uses COMP-2 for data storage.  This is really an inappropriate 
type because floating point is inherently inexact for a currency usage such 
as this example, but this code is done to parallel the original Java code 
which used the equivalent data type.  This allows the Java client to call the 
Elastic COBOL server, or the Elastic COBOL client to call the Java server. 

All the PROCEDURE DIVISION USING and INVOKING USING for EJB 
Components are done BY VALUE rather than BY REFERENCE or BY 
CONTENT.  This is important to ensure that interoperability with Java is 
preserved and that the parameters may be passed correctly across the 
network.  The interfaces generated with INTERFACE-ID are Java source; 
these Java source files are readable by a Java programmer and are 
sufficient to allow a Java programmer to access the functionality. 

If you haven't already done so, you should create and compile these .cob 
files in the directory \ecobol\samples\ejb\server. 

Deployment Descriptor 

With the .class files ready, it's time to create the deployment descriptor.  The 
deployment descriptor is identical for Java or COBOL.  In current versions of 
the EJB specification, it is an XML description of the EJB Component, its 



 

Elastic COBOL Programmer’s Guide 115 

bean and interfaces.  Follow the directions provided by the EJB Container 
vendor for this information. 

The .xml file will be placed in the META-INF subdirectory of the EJB 
Component.  In this case, it's \ecobol\samples\ejb\server\META-INF\ejb-
jar.xml. 

 
<?xml version="1.0" encoding="Cp1252"?> 
 
 <ejb-jar> 
   <description>JBoss test application </description> 
   <display-name>Test</display-name> 
   <enterprise-beans> 
     <session> 
       <ejb-name>Interest</ejb-name> 
       <home>com.web_tomorrow.interest.InterestHome</home> 
       <remote>com.web_tomorrow.interest.Interest</remote> 
       <ejb-class>com.web_tomorrow.interest.InterestBean</ejb-class> 
       <session-type>Stateless</session-type> 
       <transaction-type>Bean</transaction-type> 
     </session> 
   </enterprise-beans> 
 </ejb-jar> 

JBoss can use some additional information in a jboss.xml file.  In this case, 
it's \ecobol\samples\ejb\server\META-INF\jboss.xml. 

 
<jboss> 
   <secure>false</secure> 
   <container-configurations /> 
   <resource-managers /> 
   <enterprise-beans> 
      <session> 
        <ejb-name>Interest</ejb-name> 
        <jndi-name>interest/Interest</jndi-name> 
        <configuration-name></configuration-name> 
      </session> 
   </enterprise-beans> 
 </jboss 

Packaging and Deploying the EJB Component 

EJB Client 

An EJB Client can be any number of types of program.  It can be an 
application, a server, a Servlet, an Applet, a JSP page, or another EJB 
Component.  EJB Components communicate with each other as if they were 
clients; by loosely connecting components in this manner, the EJB 
Components are free to be fully controlled by the EJB Container. 

The following is a sample test client. 

 
* Enterprise JavaBean Client Sample 
* 
* for the JBOSS EJB Container. 
* 
* The original Java version of this EJB client is available at: 



 

Elastic COBOL Programmer’s Guide 116 

* http://www.jboss.org/documentation/jboss_win32_5.html 
* 
* This simple application tests the `Interest'  
* Enterprise JavaBean which is 
* implemented in the package `com.web_tomorrow.interest'.  
* For this to work, the Bean must be deployed on an EJB server. 
* 
* IMPORTANT If you want to test this in a real client-server 
* configuration, this class goes on the client;  
* the URL of the naming provider For this to work, the 
* be changed from `localhost:1099' to the URL of the 
* naming service on the server. 
* 
* Note: In COBOL, this program may also be used as a Servlet  
* if compiling with the -Servlet flag, or using the 
* com.heirloomcomputing.ecs.run.servlet as the 
* name of the Servlet with the Servlet parameter 'Servlet' pointing 
* to interest_client.  The only differences for Servlets would be 
* to add some additional DISPLAYs of HTML elements surrounding the 
* text, such as  
* DISPLAY "<HTML><HEAD><TITLE>EJB Client</TITLE></HEAD>"... 
* 
* The CLASSPATH must include ejb.jar (found in \jboss\lib\ext\ejb.jar 
* and other J2EE implementations), the server-side classes (only 
* the pieces actually referenced), and ecobol.jar (already setup) 
* for compilation. 
 
IDENTIFICATION DIVISION. 
PROGRAM-ID. interest-client. 
 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
REPOSITORY. 
 
* All classes are defined in either the CONFIGURATION SECTION/ 
* ENVIRONMENT DIVISION/REPOSITORY, or in the DATA DIVISION/CLASS-CONTROL. 
* The format of either is identical. 
* 
  CLASS InitialContext IS "javax.naming.InitialContext" 
  CLASS InterestHome IS "com.web_tomorrow.interest.InterestHome" 
  CLASS InterestClass IS "com.web_tomorrow.interest.Interest" 
  CLASS PortableRemoteObject IS "javax.rmi.PortableRemoteObject" 
  . 
   
DATA DIVISION. 
 
* In the Java original, the variable declarations are intermixed with 
* the procedural code. 
* 
 
WORKING-STORAGE SECTION. 
 
* Declare the variables actually used by the program.   
* The COMPOUND-INTEREST was originally done in a different format  
* for Java, but the INVOKE GIVING may reference a traditional COBOL 
* variable, allowing a more appropriate 
* display format to be chosen, such as the numeric-edited item below. 
 
       77 compoundInterest PIC $$$$,$$$,$$$.99. 
        
       77 jndiContext OBJECT REFERENCE InitialContext. 
       77 home OBJECT REFERENCE InterestHome. 
       77 ref OBJECT REFERENCE. 



 

Elastic COBOL Programmer’s Guide 117 

       77 interest OBJECT REFERENCE InterestClass. 
 
PROCEDURE DIVISION. 
 
* This method does all the work. It creates an instance of  
* the Interest EJB on the EJB server, and calls its  
* `calculateCompoundInterest' method, then  
* prints the result of the calculation. 
   
MAIN. 
       SET ENVIRONMENT "java.naming.factory.initial"  
           TO          "org.jnp.interfaces.NamingContextFactory" 
 
* Set up the naming provider; this may not always be necessary,  
* dependingon how your Java system is configured. 
 
       SET ENVIRONMENT "java.naming.provider.url" 
           TO          "localhost:1099" 
 
* Java Note: 
* Enclosing the whole process in a single `try' block is not an  
* ideal way to do exception handling, but I don't want to clutter  
* the program up with catch blocks 
 
* COBOL Note: 
* No TRY block is necessary for this.  Rather, each  
* INVOKE is automatically safe, catching its own exceptions.   
* If you want notification when an invoke fails, code the  
* individual ON EXCEPTION clause for the INVOKE. 
 
* Get a naming context 
       INVOKE InitialContext GIVING jndiContext 
       ON EXCEPTION 
           DISPLAY "Could not create InitialContext." 
           GOBACK 
       END-INVOKE 
        
       DISPLAY "Got context" 
 
* Get a reference to the Interest Bean 
       INVOKE jndiContext "lookup"  
           USING BY VALUE "interest/Interest" GIVING ref 
       ON EXCEPTION 
           DISPLAY "Could not lookup interest/Interest" 
           GOBACK 
       END-INVOKE      
 
* Note that if you did not use jboss.xml to overwrite JNDI naming 
* the object will be available under "Interest" its ejb-name 
* INVOKE jndiContext "lookup" USING BY VALUE "Interest" GIVING ref 
 
       DISPLAY "Got reference" 
 
* Get a reference from this to the Bean's Home interface 
 
       INVOKE PortableRemoteObject "narrow"  
           USING BY VALUE ref InterestHome GIVING home 
       ON EXCEPTION 
           DISPLAY "Could not narrow." 
           GOBACK 
       END-INVOKE     
            
* Create an Interest object from the Home interface 



 

Elastic COBOL Programmer’s Guide 118 

       INVOKE home "create" GIVING interest 
       ON EXCEPTION 
           DISPLAY "Could not create home." 
           GOBACK 
       END-INVOKE 
 
* call the calculateCompoundInterest() method to do the calculation 
 
       INVOKE interest "calculateCompoundInterest"  
           USING BY VALUE 1000 0.10 2 
           GIVING compoundInterest 
       ON EXCEPTION 
           DISPLAY "Could not calculateCompoundInterest" 
           GOBACK 
       END-INVOKE     
            
       DISPLAY "Interest on 1000 units, at 10% per period, " 
             & "compounded over 2 periods is:" compoundInterest                     
       . 

 

The SET ENVIRONMENT statements set Java System Properties.  Two in 
particular are used in access from a client; these set the class used as a 
naming provider and where the EJB Container is located.  Combined, these 
settings give enough information to find the correct EJB Container 
implementation. 

The lookup finds the individual application/bean on the designated EJB 
Container. 

The narrowing and creation create a proxy object on the client which 
represents the equivalent object on the server.  Only methods defined in the 
external interface are available; but all calls to this returned object are 
actually performed on the server.  All calls to the object are done using the 
INVOKE corresponding to the external METHOD-ID in the remote interface. 

In this example, every INVOKE has an ON EXCEPTION clause which 
handles errors.  Remember, EJB access is done across the network; this 
means that EJB objects may fail at any call.  The EJB Container will often try 
to transparently correct certain errors on the server side, but if the client's 
network cord is pulled in the middle of the call, there is no way it can 
completely successfully.  It's best to always do error handling when the 
object is remote.  (Certain EJB Containers can be setup to control multiple 
machines such that even machine failure may be circumvented.) 

The INVOKE of the business method in this case gives its result to a 
numeric-edited item.  The parameters to an INVOKE must be well-matched, 
but the GIVING acts as a MOVE of the actual data to the GIVING item.  The 
double precision floating point may be moved to a numeric-edited item, so 
this operation is allowed. 

Client Output 
Got context 
Got reference 
Interest on 1000 units, at 10% per period, compounded over 2 periods is:        $210.00 



 

Elastic COBOL Programmer’s Guide 119 

Server Output: 
[Interest] Someone called 'calculateCompoundInterest' in Elastic COBOL! 
[Interest]  principle=1000.0 
[Interest]  rate     =0.1 
[Interest]  periods  =2.0 
[Interest]  result   =210.0000000000002 
[Interest]  formula is principle*((1+rate)**periods)-principle



 

Elastic COBOL Programmer’s Guide 120 

Appendix A – ASCII Table 

(Zero Page Unicode) 

Dec Hex Code Dec Hex Code Dec Hex Code Dec Hex Code 
0 00 NUL 32 20 spac

e 
64 40 @ 96 60 ` 

1 01 SOH 33 21 ! 65 41 A 97 61 a 
2 02 STX 34 22 “ 66 42 B 98 62 b 
3 03 ETX 35 23 # 67 43 C 99 63 c 
4 04 EOT 36 24 $ 68 44 D 100 64 d 
5 05 ENQ 37 25 % 69 45 E 101 65 e 
6 06 ACK 38 26 & 70 46 F 102 66 f 
7 07 BEL 39 27 ‘ 71 47 G 103 67 g 
8 08 BS 40 28 ( 72 48 H 104 68 h 
9 09 HT 41 29 ) 73 49 I 105 69 i 

10 0A LF 42 2A * 74 4A J 106 6A j 
11 0B VT 43 2B + 75 4B K 107 6B k 
12 0C FF 44 2C , 76 4C L 108 6C l 
13 0D CR 45 2D - 77 4D M 109 6D m 
14 0E SO 46 2E . 78 4E N 110 6E n 
15 0F SI 47 2F / 79 4F O 111 6F o 
16 10 DLE 48 30 0 80 50 P 112 70 p 
17 11 DC1 49 31 1 81 51 Q 113 71 q 
18 12 DC2 50 32 2 82 52 R 114 72 r 
19 13 DC3 51 33 3 83 53 S 115 73 s 
20 14 DC4 52 34 4 84 54 T 116 74 t 
21 15 NAK 53 35 5 85 55 U 117 75 u 
22 16 SYN 54 36 6 86 56 V 118 76 v 
23 17 ETB 55 37 7 87 57 W 119 77 w 
24 18 CAN 56 38 8 88 58 X 120 78 x 
25 19 EM 57 39 9 89 59 Y 121 79 y 
26 1A SUB 58 3A : 90 5A Z 122 7A z 
27 1B ESC 59 3B ; 91 5B [ 123 7B { 
28 1C FS 60 3C < 92 5C \ 124 7C | 
29 1D GS 61 3D = 93 5D ] 125 7D } 
30 1E RS 62 3E > 94 5E ^ 126 7E ~ 
31 1F US 63 3F ? 95 5F _ 127 7F DEL 

 

Note: Values are based off of 0-255 scale.  Some COBOL functions require 
a 1-256 scale; add 1 for offset. 

 



 

Elastic COBOL Programmer’s Guide 121 

 

Appendix B – EBCDIC Table 

Dec Hex Code Dec Hex Code Dec Hex Code Dec Hex Code 
0 00 NUL 32 20  64 40 spac

e 
96 60 - 

1 01 SOH 33 21  65 41  97 61 / 
2 02 STX 34 22  66 42  98 62  
3 03 ETX 35 23  67 43  99 63  
4 04  36 24  68 44  100 64  
5 05 HT 37 25 LF 69 45  101 65  
6 06  38 26 ETB 70 46  102 66  
7 07 DEL 39 27 ESC 71 47  103 67  
8 08  40 28  72 48  104 68  
9 09  41 29  73 49  105 69  

10 0A  42 2A  74 4A [ 106 6A | 
11 0B VT 43 2B  75 4B . 107 6B , 
12 0C FF 44 2C  76 4C < 108 6C % 
13 0D CR 45 2D ENQ 77 4D ( 109 6D _ 
14 0E SO 46 2E ACK 78 4E + 110 6E > 
15 0F SI 47 2F BEL 79 4F | ! 111 6F ? 
16 10 DLE 48 30  80 50 & 112 70  
17 11  49 31  81 51  113 71  
18 12  50 32 SYN 82 52  114 72  
19 13  51 33  83 53  115 73  
20 14  52 34  84 54  116 74  
21 15  53 35  85 55  117 75  
22 16 BS 54 36  86 56  118 76  
23 17  55 37 EOT 87 57  119 77  
24 18 CAN 56 38  88 58  120 78  
25 19 EM 57 39  89 59  121 79 ‘ 
26 1A  58 3A  90 5A ! ] 122 7A : 
27 1B  59 3B  91 5B $ 123 7B # 
28 1C IFS 60 3C  92 5C * 124 7C @ 
29 1D IGS 61 3D NAK 93 5D ) 125 7D ‘ 
30 1E IRS 62 3E  94 5E ; 126 7E = 
31 1F IUS 63 3F SUB 95 5F ^ 127 7F “ 

 
 

Dec Hex Code Dec Hex Code Dec Hex Code Dec Hex Code 
128 80  160 A0  192 C0 { 224 E0 \ 
129 81 a 161 A1 ~ 193 C1 A 225 E1  
130 82 b 162 A2 s 194 C2 B 226 E2 S 
131 83 c 163 A3 t 195 C3 C 227 E3 T 
132 84 d 164 A4 u 196 C4 D 228 E4 U 
133 85 e 165 A5 v 197 C5 E 229 E5 V 
134 86 f 166 A6 w 198 C6 F 230 E6 W 
135 87 g 167 A7 x 199 C7 G 231 E7 X 
136 88 h 168 A8 y 200 C8 H 232 E8 Y 
137 89 i 169 A9 z 201 C9 I 233 E9 Z 
138 8A  170 AA  202 CA  234 EA  
139 8B  171 AB  203 CB  235 EB  
140 8C  172 AC  204 CC  236 EC  
141 8D  173 AD  205 CD  237 ED  
142 8E  174 AE  206 CE  238 EE  
143 8F  175 AF  207 CF  239 EF  
144 90  176 B0  208 D0 } 240 F0 0 
145 91 j 177 B1  209 D1 J 241 F1 1 
146 92 k 178 B2  210 D2 K 242 F2 2 
147 93 l 179 B3  211 D3 L 243 F3 3 



 

Elastic COBOL Programmer’s Guide 122 

148 94 m 180 B4  212 D4 M 244 F4 4 
149 95 n 181 B5  213 D5 N 245 F5 5 
150 96 o 182 B6  214 D6 O 246 F6 6 
151 97 p 183 B7  215 D7 P 247 F7 7 
152 98 q 184 B8  216 D8 Q 248 F8 8 
153 99 r 185 B9  217 D9 R 249 F9 9 
154 9A  186 BA  218 DA  250 FA  
155 9B  187 BB  219 DB  251 FB  
156 9C  188 BC  220 DC  252 FC  
157 9D  189 BD  221 DD  253 FD  
158 9E  190 BE  222 DE  254 FE  

159 9F  191 BF  223 DF  255 FF  

 

Note: Values are based off of 0-255 scale.  Some COBOL functions require 
a 1-256 scale; add 1 for offset.

 
 



 

Elastic COBOL Programmer’s Guide 123 

Appendix C – SQL 

SQLCODE default values 

 
 Description 
0 success 
100 no data 
<0 error 

SQLSTATE default values 

 
Class Subclass Description 
00 000 success condition 
01 000 warning condition 
01 001 cursor operation conflict 
01 002 disconnection error 
01 003 null value eliminated in set function 
01 004 string data, right truncation 
01 005 insufficient item descriptor areas 
01 006 privilege not revoked 
01 007 privilege not granted 
01 008 implicit zero-bit padding 
01 009 search condition too long for information schema 
01 00A query expression too long for information schema 
02 000 no data 
07 000 dynamic SQL error 
07 001 using clause does not match dynamic parameter 

specification 
07 002 using clause does not match target specifications 
07 003 cursor specification cannot be executed 
07 004 using clause required for dynamic parameters 
07 005 prepared statement not a cursor specification 
07 006 restricted data type attribute violation 
07 007 using clause required for result fields 
07 008 invalid descriptor count 
07 009 invalid descriptor index 
08 000 general connection exception 
08 001 SQL client unable to establish SQL connection 
08 002 connection name in use 
08 003 connection does not exist 
08 004 SQL server rejected SQL connection 
08 006 connection failure 
08 007 transaction resolution unknown 
0A 000 feature not supported 
0A 001 multiple server transactions 
21 000 cardinality violation 
22 000 data exception 
22 001 string data, right truncation 
22 002 null value, no indicator parameter 
22 003 numeric value out of range 
22 005 error in assignment 
22 007 invalid datetime format 
22 008 datetime field overflow 
22 011 substring error 



 

Elastic COBOL Programmer’s Guide 124 

22 012 division by zero 
22 015 inteval field overflow 
22 018 invalid charcter value for cast 
22 019 invalid escape character 
22 021 character not in repertoire 
22 022 indicator overflow 
22 023 invalid paramteter value 
22 024 unterminated C string 
22 025 invalid escape sequence 
22 026 string data, length mismatch 
22 027 trim error 
23 000 integrity constraint violation 
24 000 invalid cursor state 
25 000 invalid transaction state 
26 000 invalid SQL statement name 
27 000 triggered data change violation 
28 000 invalid authorization specification 
2A 000 syntax error or access rule violation in direct SQL 

statement 
2B 000 dependent privilege descriptors still exist 
2C 000 invalid character set name 
2D 000 invalid transaction termination 
2E 000 invalid connection name 
33 000 invalid SQL descriptor name 
34 000 invalid cursor name 
35 000 invalid condition number 
37 000 syntax error or access rule violation in dynamic SQL 

statement 
3C 000 ambiguous cursor name 
3D 000 invalid catalog name 
3F 000 schema name 
40 000 transaction rollback 
40 001 serialization failure 
40 002 integrity constraint violation 
40 003 statement completion unknown 
42 000 syntax error or access rule violation 
44 000 with check option violation 
HZ 000 remote database access 

File Status Codes 

 
Code Description 
00 OK 
02 OK, duplicate key 
04 OK, length mismatch on read; partial in XML 
05 OK, optional file missing on open; file not deleted for DELETE FILE 
07 OK, non-reel device on open or close 
10 EOF, end of file for read, or first read on missing optional file 
11 XML SAX warning 
14 EOF, too many digits on read for relative file; XML start element 
15 XML end element 
16 XML start prefix 
17 XML end pref 
18 XML error processing 
20 XML SAX error 
21 invalid key, invalid sequence; XML skipped entity 
22 invalid key, write key duplicate 
23 invalid key, random record missing 
24 invalid key, write beyond boundary 



 

Elastic COBOL Programmer’s Guide 125 

Code Description 
30 permanent error, no further info; XML SAX fatal error 
34 permanent error, boundary violation 
35 permanent error, non-optional file missing on open 
37 permanent error, open mode not supported 
38 permanent error, open locked file 
39 permanent error, open attribute mismatch 
41 logic error, already open 
42 logic error, already closed 
43 logic error, rewrite not after read; delete not after read 
44 logic error, boundary; write too big, rewrite not same size as prior 
46 logic error, already in error 
47 logic error, not input file for read; not input file for start 
48 logic error, not output file for write 
49 logic error, not input-output file for rewrite; not input-output file for delete 
51 record error, locked by other run unit 
52 record error, deadlock 
53 record error, max locks for run unit 
54 record error, max locks for file connector 
55 record error, read already locked 
61 sharing error, file sharing conflict 
90 device file not seekable 
91 operation canceled 
92 incorrect version 
93 locking error, file locked (x/open); network error 
99 locking error, record locked (x/open) 

 



 

Elastic COBOL Programmer’s Guide 126 

Appendix D – Compiler Options 

Compiler directives are passed on the ecobol.exe (or ecobol on Linux/UNIX) 
command line or in the Elastic COBOL IDE Eclipse project property COBOL Compiler 
Settings. 

 

Option Description/Option Value 

-help Help on Elastic COBOL Options 

-help:old Help on Elastic COBOL Deprecated Options 

-help:acu Help on Elastic COBOL Acu-Style Options 

-h Help on Elastic COBOL Simple-Style Options 

-dt Data (0=EC,2=Acu,4=MPE,5=MF,6=RM,7=IBMA,8=IBME) 

-dt:ec Datatype Compatible with Elastic COBOL (default) 

-dt:mf Datatype Compatible with Micro Focus 

-dt:acu Datatype Compatible with AcuCOBOL 

-dt:mpe Datatype Compatible with HP MPE/iX COBOL-II 

-dt:rm Datatype Compatible with Liant RM/COBOL 7 

-dt:bin BINARY is BINARY-REV 

-dt:truncbin BINARY byte truncation rather than PIC truncation 

-dt:compbin COMPUTATIONAL is BINARY 

-dt:aix Datatypes Compatible with IBM AIX 

-dt:os2 Datatypes Compatible with IBM OS/2 

-source:auto Auto-detect source format (default) 

-source:free Free-form source code 

-source:fixed Fixed-form source code 

-source:variable Variable-form source code 

-source:utf8 UTF-8 encoding 

-source:copypath Set COPY library path to parameter 

-source:suppress Suppress parameter from being reserved word 

-source:ignore Ignore parameter reserved word 

-source:wordlist Set reserved word suppress list to filename parameter 

-source:ansikey Use only ANSI keywords 

-source:basednumeric Based Literals are Numeric (Hex,Decimal,Octal,Binary) 

-source:hp Prefer HP semantics when in conflict. 

-source:path Add parameter to front of PATH 

-source:tabsize Set tab size in spaces 

-source:pause Pause after compilation 

-source:dbcs Activate SHIFT-IN/SHIFT-OUT DBCS 0x0e, 0x0f 

-source:dbcsso Activate parameter as DBCS SHIFT-OUT 

-source:dbcssi Activate parameter as DBCS SHIFT-IN 



 

Elastic COBOL Programmer’s Guide 127 

-source:obsx Flag Syntax Obsolete in COBOL 2002 or X/Open 

-source:archaic Flag Syntax Archaic in COBOL 2002 

-source:assignenv ASSIGN TO name is environment, not variable 

-source:assignvar ASSIGN TO name is variable, not environment 

-out:ecoboldir path to directory containing ecobol.dir 

-out:java Compile COBOL to .java (default) v1.5 

-out:javaversion Compile COBOL to specified java version 

-out:class Compile COBOL to .java, then executable .class 

-out:execute Compile COBOL to .java, .class, then execute 

-out:cobolinjava Include COBOL statements in .java 

-out:nocobolinjava Do not include COBOL statements in .java 

-out:manyfields Each 01 level in own constructor in .java 

-out:name Use parameter as name for applet/application 

-out:subprogram Designate as subprogram 

-out:package Use parameter as package name 

-out:html Generate template HTML file 

-out:nohtml Do not generate template HTML file 

-out:bean Create CobolBean interface 

-out:servlet Create Servlet interface 

-out:nobean Do not create CobolBean interface 

-out:nothreadlock Disable ThreadQueue suspension 

-out:dir Set output directory to parameter 

-out:japplet Inherit from JApplet by default 

-out:applet Inherit from Applet by default 

-out:suppress Suppress generated output (check only) 

-out:trace Enable READY|RESET TRACE 

-out:filter Set output filter (0=native,1=EBC-to-ASC,2=ASC-to-EBC, 
3=breakup large classes) 

-out:noarrayprops No Array GET|SET Properties 

-out:assert Enable ASSERT functionality 

-out:staticinvoke Statically bind OO invokes where possible 

-out:notransient Do not produce transient modifiers 

-out:smap Generate .smap file 

-out:nopretty Do not create pretty java code 

-out:transaction Allow EXEC TRANSACTION capabilities 

-out:indexcheck Check table indexes against table bounds 

-out:noindexcheck Do not check table indexes against table bounds 

-out:indexsize Set INDEX byte size to param 

-out:cicsmsg Set transaction message level 

-out:transactionmsg Set transaction message level 

-out:linkage  DFHEIBLK and DFHCOMMAREA variables creation 
(NO or YES 'default') 



 

Elastic COBOL Programmer’s Guide 128 

-err:file Set error filename to parameter 

-err:none No error output 

-err:stdout Send errors to stdout 

-err:stderr Send errors to stderr 

-err:max Set maximum reported errors to parameter 

-err:level Minimum error Level (0=All, 1=Warning, 2=Error) 

-err:pedantic Pedantic error messages 

-script:execute Execute scriptfile upon completion 

-script:append Append parameter to end of scriptfile 

-script:format Format each line of scriptfile according to parameter 

-script:javac Use parameter as Java Compiler string 

-script:java Use parameter as Java Runtime string 

-run:trace Produce tracing messages for PARAGRAPH/SECTION, 
CALL, FILE I/O operations & SQL I/O operations 

-run:tracecall Produce tracing messages for each CALL. 

-run:traceio Produce tracing messages for each FILE I/O operation. 

-run:tracepara Produce tracing messages for each 
PARAGRAPH/SECTION. 

-run:tracesql Produce tracing messages for each SQL I/O operation. 

-run:notrace Turn off all tracing messages. 

-run:notracecall Turn off tracing messages for each CALL. 

-run:notraceio Turn off tracing messages for each FILE I/O operation. 

-run:notracepara Turn off tracing messages for each 
PARAGRAPH/SECTION. 

-run:notracesql Turn off tracing messages for each SQL I/O operation.  

-run:visiblecall Display literal CALL's. 

-run:defaultbyte Fill initial memory with byte number or 'space' 

-run:noprogressbar Do not generate runtime progress bar during download 

-run:nocheckversion Do not generate runtime code to verify Java version 

-run:performrecurse Use MF style perform 

-run:noperformrecurse Use ANSI style perform 

-run:novisiblecallfail Disable Visible Call Failure 

-run:visiblecallfail Enable Visible Call Failure 

-run:dynvisiblecallfail Allow runtime to enable/disable Visible Call Failure 

-run:novisibleopenfail Disable Visible Open Failure 

-run:visibleopenfail Enable Visible Open Failure 

-run:dynvisibleopenfail Allow runtime to enable/disable Visible Open Failure 

-run:redefinesinfo Preserve REDEFINES info at runtime for Datatype 

-file:shareallothers Default share: SHARING ALL OTHER 

-file:sharenoother Default share: SHARING NO OTHER 

-file:sharereadonly Default share: SHARING READ ONLY 

-file:sharenone Default share: no default/explicit sharing 



 

Elastic COBOL Programmer’s Guide 129 

-file:$infilename dollar symbol ($) may be part of file name 

-cache:enable Enable cache always 

-cache:disable Disable cache always 

-cache:auto Automatic cache control (default) 

-sql:off Disable SQL Support. Abends on SQL statements 

-sql:len Set SQL VARYING stub len to param (len) 

-sql:txt Set SQL VARYING stub txt to param (arr) 

-sql:next SQL JDBC/DB2 next() workaround 

-sql:db2 SQL IBM JDBC/DB2 workarounds 

-sql:cro SQL CONCUR_READ_ONLY 

-sql:ta SQL Transaction Adjust 

-sql:sc SQL Server handles Concat (||) 

-sql:it SQL Ignore Right Truncation 

-sql:jdbc SQL JDBC level to parameter (1,2,3,4) 

-sql:sp Generate SQL Stored Procedure of type "param": db2 
only supported at this time. 

-sql:logmode SQL Logging (NO, YES) 

-sql:groupmode SQL group items treated as single item 

-sql:nogroupmode SQL group items treated as multiple items 

-sql:nowarn SQL Warning not obtained from JDBC 

-sql:declarestatic SQL DECLARE CURSOR always static 

-sql:declaredynamic SQL DECLARE CURSOR dynamic when possible 

-sql:opt Pass SQL option, -sql:opt ? for dump 

-sql:mode SQL in given parameter mode (ANSI, ORACLE, DB2) 

-sql:cc SQL Close on Commit to parameter (YES, NO) 

-sql:eof SQL END OF FETCH value (100,1403) 

-sql:unsafenull SQL Unsafe Null (NO,YES) 

-sql:picx SQL PICX type (CHARF,VARCHAR2) 

-sql:url Check SQL syntax against database URL (e.g., 
jdbc:postgresql://localhost/mydb) 

-sql:user Check SQL syntax against database USER (e.g., postgres) 

-sql:password Check SQL syntax against database PASSWORD (e.g., 
mypw 

-sql:driver Check SQL syntax against database DRIVER (e.g., 
com.postgresql.Driver) 

-listing:xml Listing file XML form to programid.xml 

-listing:body Listing file XML includes source body 

-listing:define Listing file XML includes 'define' tag 

-listing:file Listing file set to mainfile.list 

-listing:cross Listing file includes cross-reference 

-listing:vbref Listing file cross-reference includes verbs 

-listing:info Listing file cross-reference includes info lines 



 

Elastic COBOL Programmer’s Guide 130 

-listing:all Listing file cross-reference includes all options 

-listing:dir Listing files output directory 

-cp Use parameter as classpath 

 



 

Elastic COBOL Programmer’s Guide 131 

Appendix E – Runtime Options 

Elastic COBOL runtime options are applied as Java defined runtime options, 

java –Dname=value –jar myproj.jar 

as parameters to the application, 

java–jar myproj.jar name=value 

or included as part of an Elastic COBOL configuration file in the current working 
directory or /etc directory named cblconfig, cblconfi, cobopt.cfg or other file as set 
with the CBLCONFIG property set with –DCBLCONFIG=/tmp/my-ec.conf 

name=value 

 

Option Option Value Description 

DDNAME DATASETNAME When -source:assignenv compiler option is 
specified, associate DDNAMEs from HCI Batch 
Platform (JES/JCL) referenced in COBOL programs 
to dataset (file) names on disk 

DDNAME.DISP SHR, OLD, MOD When -source:assignenv compiler option is 
specified, set the disposition of the COBOL 
connection for the SELECT statement.  By default, 
INPUT is shared (SHR) disposition and OUTPUT and 
I O are exclusive (OLD) disposition.  Applications 
running in HCI Batch Platform (JES/JCL) with 
DISP=MOD set the equivalent of EXTEND mode 
although the program opens for OUTPUT. 

FILESYSTEM ECOBOL, 
MICROFOCUS, 
ACUCOBOL, 
ACUCONNECT, 
ISAM, OS400 

Changes the default filesystem used by Elastic 
COBOL.  If a protocol is not specified in an ASSIGN 
TO, the default filesystem is used where applicable. 

FILESYSTEMSEQ ECOBOL, 
MICROFOCUS, 
ACUCOBOL, 
ACUCONNECT, 
ISAM, OS400 

Changes the default filesystem for sequential files.  
If a protocol is not specified in an ASSIGN TO, the 
default filesystem is used where applicable. 

FILESYSTEMREL ECOBOL, 
MICROFOCUS, 
ACUCOBOL, 
ACUCONNECT, 
ISAM, OS400 

Changes the default filesystem for relative files.  If a 
protocol is not specified in an ASSIGN TO, the 
default filesystem is used where applicable. 

FILESYSTEMIDX ECOBOL, 
MICROFOCUS, 
ACUCOBOL, 
ACUCONNECT, 

Changes the default filesystem for indexed files.  If 
a protocol is not specified in an ASSIGN TO, the 
default filesystem is used where applicable. 



 

Elastic COBOL Programmer’s Guide 132 

ISAM, OS400 

IDXCACHEMODE READONLY, 
READWRITE  

Changes the default indexed file cache mode 
setting.  Read only caching is slower, but also safer.  
NOTE: If this value is not set and the indexed file is 
open for MASS UPDATE, then read-write caching is 
used. 

IDXCACHE default Changes the indexed file cache size percentage 
setting.  To double the cache size use 200.0, to 
halve it use 50.0.  This setting enables fine tuning of 
indexed file performance in some cases. 

CONSOLEFG BLACK, BLUE, 
GREEN, CYAN, 
RED, MAGENTA, 
YELLOW, BROWN, 
WHITE, BRIGHT-
BLACK, BRIGHT-
BLUE, BRIGHT-
GREEN, BRIGHT-
CYAN, BRIGHT-
RED, BRIGHT-
MAGENTA, 
BRIGHT-YELLOW, 
BRIGHT-BROWN, 
BRIGHT-WHITE 

Foreground color used by default in the graphically 
emulated text console. 

CONSOLEBG BLACK, BLUE, 
GREEN, CYAN, 
RED, MAGENTA, 
YELLOW, BROWN, 
WHITE, BRIGHT-
BLACK, BRIGHT-
BLUE, BRIGHT-
GREEN, BRIGHT-
CYAN, BRIGHT-
RED, BRIGHT-
MAGENTA, 
BRIGHT-YELLOW, 
BRIGHT-BROWN, 
BRIGHT-WHITE 

Background color used by default in the graphically 
emulated text console. 

SECURE-CHAR * This character is used in password fields as a 
substitute for sensitive information. 

LINES 25 Changes the default number of screen lines for the 
console. 

COLUMNS 80 Changes the default number of screen columns for 
the console. 

CURSOR-MODE 1, 2, 3 Determines when the cursor should be visible: 
1=Always, 2=Never, and 3=Only during ACCEPT. 

CONSOLE-FONT default Override the default console font where applicable. 

CONSOLE-FONT- default Override the default console font size where 



 

Elastic COBOL Programmer’s Guide 133 

SIZE applicable. 

CONSOLE-CELL default Overrides the console's font width setting. 

CONSOLE-
WIDTH-MAX 

default Sets the maximum width of font allowed. 

CONSOLE-
WIDTH-MIN 

default Sets the minimum width of font allowed. 

CONSOLE-
WIDTH-MULT 

default Sets a multiplier for the font width heuristic. 

CONSOLE default List of console font settings, separated by commas, 
in this order: CONSOLE-CELL, CONSOLE-WIDTH, 
CONSOLE-WIDTH-MIN, CONSOLE-WIDTH-MAX, 
CONSOLE-WIDTH-MULT, CONSOLE-FONT. 

USER-GRAY default Used to override color number 7, low intensity 
white.  This value should be a decimal, octal, or 
hexadecimal 24-bit integer (RGB). 

USER-WHITE default Used to override color number 15, high intensity 
white.  This value should be a decimal, octal, or 
hexadecimal 24-bit integer (RGB). 

PFTERMS default Controls function key terminator assignments.  For 
example: 4-6,!9,10  will assign F4,F5,F6 and F10 to 
be user defined function key terminators.  F9 will 
be disabled as a terminator, and the function keys 
that are not in the list will be assigned as system 
defined function key terminators. 

TERMINATE ENTER, ESCAPE, 
CONTROL-x 

Controls normal terminator assignments.  For 
example: ESCAPE, ENTER, CONTROL-G  will allow 
the escape, enter, and control-G keys to terminate 
an ACCEPT. 

KEYCODESTYLE ACU, MF, CHAR, 
JAVA 

Controls which raw key codes are returned in CRT-
STATUS.  For example, JAVA will return VK_ 
KeyEvent codes, CHAR will return ASCII codes, MF 
returns Micro Focus style codes, ACU returns 
AcuCOBOL style codes. 

MQSERVER localhost Assigns MQSeries server hostname or IP address. 

MQ_HOSTNAME localhost Assigns MQSeries client hostname or IP address. 

MQ_PORT default Assigns MQSeries port number. 

MQ_CHANNEL default Assigns MQSeries channel setting. 

MQ_USER_ID none Assigns MQSeries user identification. 

MQ_PASSWORD none Assigns MQSeries user password. 

CODE-SUFFIX none Appends a string to the end of program names for 
all CALL statements. 

CODE-CASE 0, 1, 2 Forces uppercase or lowercase program names for 
all CALL statements.  0 = No force (default), 1 = 
Force lowercase, 2 = Force uppercase. 

CODE-MAPPING True, False Enables program name mapping for CALL 
statements.  At the time of a CALL, if CODE-



 

Elastic COBOL Programmer’s Guide 134 

MAPPING is enabled and a configuration parameter 
matching the CALL statement's program name is 
set to a value, the value of the parameter is used in 
place of the program name. 

S1,S2,S3,S4, 
S5,S6,S7,S8, 
S9,S10,S11, 
S12,S13,S14, 
S15,S16,S17, 
S18,S19,S20, 
S21,S22,S23, 
S24,S25,S26 

True, False COBOL Switch values 

DEBUGMODE True, False Execute in debugger if debug information present.  
This debug information must have been compiled 
into the program by setting the debug flag before 
compilation. 

SHOWNUMERICER
ROR 

True, False Certain numeric errors may be detected at runtime 
that have an automatically corrected default 
behavior, bringing the numeric to zero.  This 
condition may be made visible in certain cases by 
setting this flag. 

DEFSYS True, False Default to SYSIN/SYSOUT rather than CONSOLE or 
other runtime default.  This may also be specified 
at compilation time. 

LOG_SQL True, False Enable verbose logging of runtime SQL activity; this 
is useful for tracking down lower-level activities of 
the SQL/JDBC access. 

LOG True, False Enable general runtime logging. 

file.encoding Cp1252 Encoding for all I/O (file and display statements). 

ibm.encoding Cp1047 File encoding for IBM EBCDIC files when -dt:ibm 
compile time option has been specified 

CHECKINDEX True/1/on, 
False/0/off 

Used along with compiler option 
-out:indexcheck. Its value determines what 
happens when an index out of bounds situation is 
detected. When set to true, it causes the runtime 
to throw an IndexOutofBounds CobolException and 
terminate the program. When set to false(default), 
it causes the runtime to return a 
ArrayIndexOutOfBoundsVariable object as the 
referenced item. 

GARBAGE DEFAULT, 
VERBOSE, QUIET 

Used to determine the actions associated with the 
creation and interaction with 
a ArrayIndexOutOfBoundsVariable object. Default 
behavior is to return 0/null when accessed and 
throw a CobolException if an attempt is made to 
move a value to it. VERBOSE is similar to DEFAULT 
but also logs a message if Logging is set to true. The 



 

Elastic COBOL Programmer’s Guide 135 

messages get logged when a IndexOutofBounds 
error occurs and also when 
the ArrayIndexOutOfBoundsVariable  throws an 
exception. QUIET is same as DEFAULT but does not 
throw an exception when a value is moved to the 
object.  

RUN_TRACE 1 (on), 0 (off) If application has been compiled with 
-run:trace[para|call|io|sql], then all trace 
information can be suppressed by setting to 0. 

RUN_TRACEPARA 1 (on), 0 (off) If application has been compiled with -run:trace or 
-run:tracepara, then all PARAGRAPH trace 
information can be suppressed by setting to 0. If 
RUN_TRACE=0, then this setting is ignored. 

RUN_TRACECALL 1 (on), 0 (off) If application has been compiled with -run:trace or 
-run:tracecall, then all CALL trace information can 
be suppressed by setting to 0. If RUN_TRACE=0, 
then this setting is ignored. 

RUN_TRACEIO 1 (on), 0 (off) If application has been compiled with -run:trace or 
-run:traceio, then all FILE I/O trace information can 
be suppressed by setting to 0. If RUN_TRACE=0, 
then this setting is ignored. 

RUN_TRACESQL 1 (on), 0 (off) If application has been compiled with -run:trace or 
-run:tracesql, then all SQL I/O trace information can 
be suppressed by setting to 0. If RUN_TRACE=0, 
then this setting is ignored. 



 

Elastic COBOL Programmer’s Guide 136 

IndexA 

ANSI Standard, 3 

Applet, 96 

Applet Client Setup, 68 

ASCII, 2, 118 

Assigning the Printer, 36 

B 

Barcode, 40 

Binary numeric, 52 

C 

CGI, 103 

character datatypes, 50 

CLASSPATH, 5 

COBOL 2002, 1 

COBOL CALL, 6 

COBOL-85, ii, 104 

COPYPATH, 2 

D 

Data Description Specification, 30 

Datatype storage, 50 

DDS, 30 

Development, iii 

DISPLAY, 29 

E 

EBCDIC, 2, 119 

EJB Class, 110 

EJB Client, 113 

Enterprise JavaBeans, 104 

EXEC HTML, 29, 101 

F 

File Locking, 64 

File Storage, 53 

Fixed, 1 

fixed-point numeric datatypes, 50 

floating-point numeric, 53 

Form printing, 38 

Forms, 38 

Free format, 1 

G 

Graphics, 26 

H 

Host Variables, 67 

HOSTVAR tag, 102 

HP-UX, iii 

I 

IBM, iii, 68 

Indexed files, 55 

INVOKE, 7 

INVOKE verb, 10 

J 

Java, iii 

Java Native Interface, 20, 23 

Java server, 18 

JDBC, 65 

JNI, 20 

L 

lifecycle, 4 

line delimited, 2 

Line Oriented, 25 

Line sequential files, 54 

Literals, 3 

Locale, 31 

Localization, 30 

Locking, 64 

M 

Message Queueing system, 68 

Microsoft, iii 

MPE, iii 

MQBACK, 69 

MQBEGIN, 70 

MQCLOSE, 70 

MQCMIT, 70 

MQCONN, 70 

MQCONNX, 70 

MQDISC, 71 

MQGET, 71 

MQINQ, 71 

MQOPEN, 71 

MQPUT, 72 

MQPUT1, 72 

MQSeries, 68 

MQSeries API's, 69 

MQSERVER, 68 

MQSET, 72

O 

Oracle, iii 

ORGANIZATION TRAN, 63 

ORGANIZATION XML, 55 

OS/390, iii 

OS/400, iii



 

Elastic COBOL Programmer’s Guide 137 

P 

Packed Decimal, 52 

Parsing XML, 57 

Printing, 36 

R 

Record Locking, 64 

registry, 9 

Relative files, 54 

Remote File Server, 63 

Remote Method Invocation, 8 

Resource Program Code, 32 

RMI, 104 

RMI server, 20 

S 

Screen Oriented, 25 

SCREEN SECTION, 26 

Sequential files, 54 

Servlet, 98 

session concept, 8 

Sessions, 8 

SQL, 65 

SQL Connection, 66 

SQLCODE, 67 

SQLSTATE variables, 67 

Stubs, 23 

T 

THREAD, 7 

Threads, 7 

U 

Unicode, 2 

UNIX, iii 

V 

Variable, 1 

VPLUS, 30 

W 

Windows, iii 

X 

XML, 55 

XML in Elastic COBOL, 57 

Z 

Zoned Decimal, 51

 


